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Problem 1 
Part A (40%) 
Define these terms and their place in estimation theory: 

• A statistic 

• An estimator 
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• A confidence limit 

• An unbiased estimator 

• A consistent estimator 

•  

 

Part B (40%) 
• Take a few minutes to explain what a sufficient estimator is. 

• Define an invariant estimator. 

• What is an efficient estimator? 

 

Part C (20%) 
The Kalman update is an estimator that uses the extrapolated state vector x  and the 
measurement data vector y  to compute an estimator x̂  for the state vector x , 

 ( )( )x̂ x K y h x= + ⋅ −  

where K is the Kalman gain, 

 ( ) 1T TK P H H P H R
−

= ⋅ ⋅ ⋅ ⋅ +  

y(x) is an algebraic model of the measurements y in terms of the states x, and H is the 
gradient of y with respect to x 

 ( )
x x

h x
H

x
=

∂
=
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and P  is the covariance of the extrapolated state vector x .  The covariance of the 
updated state vector estimate x̂  is 

 ( ) ( )T TP I K H P I K H K R K= − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅  

Under what conditions is a Kalman update an efficient estimator of the state vector? 

 

Response 
From the lecture notes and handouts of February 23, 2—6: 

• A statistic is a function of data.  Examples are the sample mean, the sample 
variance, the sample median, and the sample quartiles. 

• A function of data which approximates an unknown parameter is an estimator. 
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• A confidence limit is a probability that is set as part of an experiment design as an 
a priori threshold on the significance of results of the experiment. 

• An unbiased estimator is one whose ensemble mean is equal to the value of the 
unknown parameter. 

• A consistent estimator is one which approaches the value of the unknown 
parameter as the number of measurements increases without bound. 

• A sufficient estimator is one that uses all the information in the available data that 
applies to estimating the value of the unknown parameters. 

The Neyman-Fisher factorization theorem states that an estimator of a set of states x is 
sufficient if and only if the conditional probability density of the measurement data y 
given the states x can be factored as 

 ( ) ( )( ) ( ),p y x g x y h yφ= ⋅  (1.1) 

Let’s use this theorem to look at our starting point for maximum likelihood estimators, 

( )p y x .  We know from Bayes’ definition of conditional probability that 

 ( ) ( ) ( ) ( ) ( ),p x y p y x p x p x y p y= ⋅ = ⋅  (1.2) 

Thus we can write 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( )

,p y x p x g x h y p x
p x y

p y p y

φ⋅ ⋅ ⋅
= =  (1.3) 

where ( )p y  is defined as 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

p y p x y d x p y x p x d x

h y g x p x d xφ

= ⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅

∫ ∫
∫

 (1.4) 

We combine (1.3) and (1.4), noting that ( )h y  cancels, and we have 

 ( ) ( ) ( )
( ) ( )

( ),

,

g x p x
p x y p x

g x p x d x

φ
φ

φ

⋅
= ≡

⋅ ⋅∫
 (1.5) 

That is, the a priori probability density function of x given the data y is the same as the a 
priori probability density given the sufficient estimator ( )yφ .  Thus we have all the 
information about x that is contained in the data y also contained in the sufficient 
estimator ( )yφ . 

Part C is explained in the lecture, notes, and handout of February 23.  Section 6.4 showed 
that estimators that are derived by the method of maximum likelihood are efficient only if 
the states are linearly related to the measurements (but that they were asymptotically 
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efficient in any case).  Section 7 showed that the Kalman update can be derived by the 
method of maximum likelihood, and the covariance update is also a result of analyzing 
the Kalman update using the method of maximum likelihood.  Thus the Kalman update is 
efficient only if the states are linearly related to the measurements.  If the states are not 
linearly related to the measurements, then the Kalman update is not efficient, is not 
unbiased, and the covariance update is not achieved because it is the Cramer-Rao bound 
and achieved only by efficient estimators.  Asymptotic efficiency is not a consideration 
for the Kalman update because only one update is done with one set of data.  An 
exception might be taken if there is no process noise and the state extrapolation is linear, 
so that the Kalman updates over time are algebraically equivalent to a batch estimator. 

Problem 2 
Part A (50%) 
Define these three estimator techniques and briefly describe the distinctions between 
them: 

• Maximum likelihood estimator 

• Maximum a posteriori estimator 

• Bayesian mean 

Part B (50%) 
Given an unknown state vector x and a set of measurements y, and the conditional 
probability density function ( )p y x , write the equation for the general form for: 

• The likelihood function 

• The log likelihood function 

• The likelihood equation 

• The Cramer-Rao Bound 

Response 
Part A is given in the lecture, notes and handouts for February 23, 2006, section 5. 

The maximum likelihood estimator poses the likelihood function of the available data y 
given a particular set of states x as the conditional probability density function ( )p y x .  

The maximum likelihood estimator is the set of states x that maximizes this probability 
density function for the measurements y as observed.  Since the likelihood function is 
usually quite easily written, the method of maximum likelihood is usually very simple to 
apply to practical problems. 

The maximum a posteriori (MAP) estimator finds the set of states that maximizes the a 
posteriori probability density function, which is defined as ( )p x y .  Bayes’ theorem 
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shows that the a posteriori probability density function and the likelihood function are 
related by 

 ( ) ( ) ( )
( )

p y x p x
p x y

p y

⋅
=  (2.1) 

where we define ( )p y  as 

 ( ) ( ) ( ) ( ),p y p x y d x p y x p x d x= ⋅ = ⋅ ⋅∫ ∫  (2.2) 

This method can be applied when the probability density function of the states ( )p x  
without knowledge of measurements can be written. 

The Bayesian mean is defined as 

 ( )x̂ x p x y d x= ⋅ ⋅∫  (2.3) 

and can be used when the a posteriori probability density function of x can be written. 

Part B is given in the lectures and notes for February 23, 2006, section 6. 

• The likelihood function is the conditional probability density function ( )p y x . 

• The log likelihood function is the natural logarithm of the likelihood function, 

( )( )ln p y x . 

• The likelihood equation is 

 
( )( )ln

0
p y x

x

∂
=

∂
 (2.4) 

• The Cramer-Rao Bound is the minimum covariance possible and is given by 

 
( )( )( )2

1
2

ln p y x
P

x
−

∂
= −

∂
 (2.5) 

Note the minus sign and the inverse.  The inverse of the covariance matrix, when the 
covariance matrix is the Cramer-Rao bound, is called the Fisher information matrix. 

Problem 3 
Part A (50%) 
Given a set of M samples of Gaussian random variables that have a mean of m and a 
variance of 2σ , we will write down a maximum likelihood estimator (MLE) for the 
mean.  The measurements are of the form 

 i iy m v= +  
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where the measurement noises vi are Gaussian random variables with zero mean and 
variance 2σ .  Write down 

• The likelihood function. 

• The log likelihood function. 

• The likelihood equation for m. 

• The estimator for m. 

• The variance of the estimator for m. 
 

Use the Cramer-Rao bound as your estimator for the variance of m. 

Part B (50%) 
Modify the estimator for Part A to include the variance 2σ .  Using the log likelihood 
function from Part A, write down 

• The likelihood equation for 2σ . 

• The estimator for 2σ . 

• The variance of your estimator for 2σ . 

 

Use the Cramer-Rao bound as your estimator for the variance of 2σ . 

Response 
Part A is exactly the same problem presented in detail on March 2, 2006, Section 1, with 
the simplification that only the sample mean is required by the problem.  Please refer to 
those notes and handouts. 

Part B asks for the estimate of the variance, and is part of the example presented on 
March 2, 2006, in the handouts Section 1. 

Problem 4 
Building a radar tracker, “Care and Feeding of Radar Trackers,” is the problem we will 
address here. 

Part A (50%) 
When an estimate of SNR is available from any means, write down a working equation 
for the variance of a measurement.  Then, give 

• The lowest possible measurement variance for very high SNR 

• The measurement variance for zero SNR. 

• The term xc  for moderate SNR in the form 
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 2 x
y

c
SNR

σ ≈  

 

Part B (50%) 
Use the equations for the “Snake-oil” two-state tracker presented on March 16 in this 
part.  Using the form for 2

yσ  for moderate SNR from Part A, write 

• The equation for the Kalman gain in terms of the SNR. 

• The equation for the updated state covariance P in terms of the SNR. 

• The ratio of the determinants of the extrapolated and updated covariance matrices 
in terms of the SNR. 

Response 
In the lecture notes and handouts for March 16, 2006, section 1.1 addresses Part A.  
Variances of individual measurements as a function of signal-to-noise ratio (SNR) 
usually follow the form 

 2 1
0

21y
cc

c SNR
σ = +

+ ⋅
. (4.1) 

Note that SNR is a power ratio; never use decibels in an equation.  Angle measurements 
using monopulse need a slightly more complicated equation, but we are not concerned 
with them here. 

• The lowest possible measurement variance for very high SNR is 0c .  This term is 
where you put in the lower limits due to measurement quantization and other 
sources of noise that will always be present regardless of how high the SNR is. 

• The measurement variance for zero SNR is 0 1c c+ .  Clearly, this term will be 
dominated by 1c , so 1c  is where you put the number your analysis shows is the 
measurement variance for zero SNR.  This value may not be given directly but 
can be part of the process of setting 2c . 

• The equation given shows that the measurement variance begins to be affected by 
the SNR when 21SNR c> .  For 21SNR c , the measurement variance is 
essentially given by 

 2 1 2 1 1

2 0 2 2 0

1 1 1,y
c c c cSNR
SNR c c c c c

σ ≈ ⋅ = ⋅  (4.2) 

If the SNR is always significantly greater than zero (as is usually the case) and the 
measurement variance is always inversely proportional to SNR, the “1” can be 
dropped and only the coefficient 1 2xc c c=  used. 
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Part B asks that we use (4.2) in the Snake Oil Tracker equations to show how SNR 
affects the Kalman filter parameters.  Please refer to the lecture notes and handouts from 
March 16, 2006, section 2.3 for the Snake Oil Tracker update equations.  The Kalman 
gain is 
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The equation for the updated state covariance matrix P in terms of the SNR is 
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The ratio of the determinants is 
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We observe from (4.3) that when the SNR is high and the measurement variance is low 
compared to the variance of the position state, the Kalman gain essentially takes the 
measurement data for the position state.  Further examination for high SNR for two 
updates with high SNR will reveal that the velocity state is essentially estimated as the 
change in position from the last two updates, divided by the time between updates. 

We observe from (4.4) that the covariance matrix is reduced by a factor of the ratio of the 
measurement and position state variances, except for 22p , which is essentially left near 

22p  but reduced by 2
12 11p p .  For two or more successive updates, this also dramatically 

reduces 22p .  This is further borne out by examining(4.5), which shows that the 
determinant of the covariance matrix is reduced by a factor proportional to the SNR, and 

22p  as given by (4.4) is proportional to the determinant of the extrapolated covariance 
matrix. 

One can conclude that nonzero plant noise must be included for the velocity state or, for 
high SNR, the covariance matrix will decrease geometrically and covariance collapse will 
inevitably result, even for the Snake-Oil tracker. 
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Problem 5 
In this problem you will be asked for your judgement as a system engineer.  Your grade 
will be based on your reasons as much as your conclusions. 

Part A (50%) 
You are asked to provide a preliminary recommendation for the configuration of a radar 
tracker for a new radar, not an ASR-9 or DASR but a radar that is offered for networking 
by another Agency.  This new radar will provide azimuth tick information, plus time tag 
information, and horizontal monopulse azimuth data.  SNR will be available but not 
measurement variances.  The SSR data is present, and the SSR antenna is mounted on top 
of the PSR antenna.  The azimuth bias of this radar is unknown but uniform over 360 
degrees – that is, azimuth bias is not a function of aircraft azimuth.  In addition to aircraft 
angle, aircraft range rate information is available as Doppler information.  The range of 
this radar for transport aircraft at altitude is 120 nautical miles.  It is not located near an 
airport but air traffic routes pass over the coverage area of the radar. 

 

The aircraft environment at this radar location is described as sparse to moderate, with no 
more than 10 radar contacts.  The output of this radar is used to supplement ARSR radars 
but is not used to merge with data of radars that track the same aircrafts simultaneously.  
You need to make recommendations based on the following alternatives: 

a) Would you recommend a Kalman filter or an alpha-beta filter?  Why? 

b) Do you need to estimate an additional azimuth bias state?  Why? 

c) Do you recommend that IMM be incorporated into the tracker design?  Why? 

d) Do you recommend an MHT layer on the tracker for track-before detect?  Why? 

e) If you estimate azimuth bias, would you estimate is with the tracker or add a batch 
estimator specifically for estimation of azimuth bias?  Why? 

 

Part B (50%) 
We have a radar identical to the one in Part A but at a different site.  This site is near an 
airport and the new radar’s coverage area overlaps two existing ASR radar coverage 
areas and some ARSR coverage areas.  Data from all radars that detect a particular 
aircraft will be fused, and a central C2 database will support an ATC facility at the 
airport.  The aircraft environment at this radar location is described as dense, with 100 to 
300 aircraft in its coverage area.  Data from existing radars is available for estimating 
azimuth bias.  You need to make recommendations based on the following alternatives: 

a) Would you recommend a Kalman filter or an alpha-beta filter?  Why? 

b) Do you need to estimate an additional azimuth bias state?  Why? 

c) Do you recommend that IMM be incorporated into the tracker design?  Why? 

d) Do you recommend an MHT layer on the tracker for track-before detect?  Why? 
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e) If you estimate azimuth bias, would you estimate is with the tracker or add a batch 
estimator specifically for estimation of azimuth bias?  Why? 

Response 
There is no right or wrong answer for this problem.  In particular, the requirements are 
given in broad terms, and the details may be interpreted differently by different people.  
Your score is based on your interpretation of the requirements and how different 
solutions as spelled out in the problem will meet the requirements. 

We have a typical situation where an air surveillance radar is made available from 
another Agency.  This radar has horizontal monopulse data and Doppler information, and 
an SSR is incorporated into the main antenna. 

For Part A, the mission of this radar is to supplement ARSR (long range route 
surveillance) ATC radars.  Thus this new radar is basically a gap-filler and its 
performance requirements are similar to those of ARSR radars except possibly for 
detection range.  Good responses to Part A are: 

• An alpha-beta tracker is adequate to meet performance requirements for the 
ARSR mission, so this is an acceptable recommendation.  However, a Kalman 
filter can accept Doppler measurements and better use monopulse data, and as 
such make it simpler to integrate SSR data, rather than pass PSR and SSR data to 
the C2 net separately.  As we see from the Snake-Oil tracker, little additional 
complexity is needed for a Kalman filter over an alpha-beta tracker.  In addition, 
estimation of biases may be possible with this radar, and as such it may provide a 
first step in upgrading the ARSR integration with the ATC network.  Thus a 
Kalman filter may be more useful in upgrading ARSR support to the C2 net.  An 
air surveillance radar with monopulse measurements, Doppler measurements, and 
an integrated SSR will have more than sufficient on-board data processing 
capacity to do data fusion between the PSR and SSR and support the C2 interface.  
This capability should be supported if the C2 net, or upgrades to it, require this 
performance. 

• Estimation of azimuth bias is not required for ARSR support, so an extra bias 
state on a Kalman tracker is not required.  In any case, bias can be estimated with 
an extra state on the Kalman filter but a simpler tracker architecture may result 
from use of a batch estimator for biases. 

• En-route surveillance is not likely to need IMM, even if high-performance aircraft 
comprise some of the radar contacts. 

• En-route surveillance of low-traffic areas would not benefit from MHT. 

• As mentioned above, a batch estimator for biases would result in simpler trackers. 

 

For part B, our new radar is to be integrated into the ASR net in a high-traffic area near 
an airport.  Here, the azimuth monopulse, Doppler measurement, and integrated SSR 
capabilities are more than welcome.  Acceptable responses are: 
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• We surely need a Kalman filter to do 2-D tracking using the azimuth monopulse 
and Doppler measurements.  We would use polar coordinates internally to the 
Kalman filter to achieve efficient estimation in the Kalman updates. 

• We would want to estimate biases to allow close coupling of radars in the C2 net.  
Our radar will have two-way C2 capability and we may want to use it to estimate 
biases.  We may want to use an extra state or states if our own azimuth bias is a 
function of antenna rotation angle or weather conditions – i.e., varying with time 
and antenna rotation. 

• Near an airport, we would want IMM to detect maneuvers on the first hit rather 
than wait for turns to be detected after several hits. 

• In a dense environment where altitude is not measured, MHT can support 
continued high performance in the scenarios that inevitably result in some 
misassociations.  This can be a real asset in the ASR missions. 

• We may use a bias state or states if our own bias is a function of time (wind) and 
antenna angle.  If we are estimating a constant angle bias – a radar site calibration 
setup error – then a batch estimator is probably a better answer because it 
provides better data and leaves the tracker without the complication of an added 
state. 

Interpretation of the requirements and understanding of how different tracking and 
estimation techniques support different requirements is most important here; more 
than one solution is acceptable for any problem in the real world. 

 


