Gelb Example 1-1 Pages 5 and 6

Problem Statement

Two sensors

e Each has a single noise measurement

° 7 =X+V

e Unknown X is a constant

e Measurement noises v; are uncorrelated (generalized in Problem 1-1 pages 7 and
8)

e Estimate of x is a linear combination of the measurements that is not a function of
the unknown to be estimated, x

We define a measurement vector y,

{q} {x+w}
y= = =X-1+v
= |z X+V,

where 1 is a vector with all 1’s, and a linear estimator gain k,

)

and an estimate is a linear combination of the measurements:
x=k"-y.
We define an error (note difference in notation from the example, for consistency with
later usage of similar notation)

X, =X—X.
We require that k be independent of x and that the mean of the estimate be equal to x:

E(X)=x
where E(*) is the expectation, or ensemble mean, operator. We substit  ute the
equations for the estimate and measurement to find a constraint on the linear estimator
gain k as follows:

E(X)= E(KT 'X): E(KT -(x-1+\_/)): X .

The hypothesis of zero mean measurement noise is, in equation form,

E(v)=0
and we have

k'-1=1
as the condition on the linear estimator gain. Note that another solution is x=0, which we

discard since x is an unknown and is not to be constrained, since we have required that k
not depend on x.

We minimize the mean square error, and denote what we are minimizing as J, which we
will call a cost function. This is a term for an optimization criterion. This is



J=E(X)=E((x-x)").

Again substituting from the above, we have

J= E((KT -(x-1+y)—x)2)

RiGRRE
=E(x k"I ) ) E(k" 1y k)K" E(vy') -k
—2x-E(x-(K -1)+K -y)+x2

This is three quadratic forms in k, plus a couple of other terms linear in k, and a term
independent of k. Let’s look at the three quadratic terms separately. The first term has
no random variables, so the expected value is simply the quantity in the expectation

operator:
E(x*-K - (17-1) k) =x* K +(1 1)k

There is a very interesting matrix in this equation:

T Ll
!

Expressions of the form x""Ax are called quadratic forms because they are the sum of
terms that are quadratic in the elements of x — they include the products of two elements
of x and one element of the matrix A. Let’s look at the quadratic form for this very
interesting matrix and the linear estimator gain k:

K (17 1)k=[k k]E ﬂ {H (K1) =k +k,)

which we can see is consistent with our scalar problem statement and our other equations.

The second quadratic form is linear in the elements of v and this means that the
expectation or mean of each term is zero, so we can drop it out now.

The third term contains a very special matrix, the covariance matrix of the measurement
noise vector v:

VRV : .0, -
E(\_/-yT)=E 1 122 _ 0, palzaz =R,.
ViV, Y, P01 0, o

We will leave in the correlation coefficient o and not take it as zero as in the example,

because, as we will quickly see, there is no immediate advantage in simplicity in
dropping it out. We can always make it zero in our result later.

The linear terms are
—2X- E(x-(KT -1)+KT

-v)+ x2=-2x2-k" -1+ x2.

Since we have



k'-1=1

we note that the terms involving x* sum to zero, so we can drop them and have a very
simple equation for the mean square error:

J=k"-R, k.
We need to minimize this equation with respect to the linear estimator gain k, subject to
the condition for an unbiased estimate. We can do this directly, at the expense of the
simple equation for the optimization criteria J that we have, and in the process make our
solution specific to the problem statement and give up its generality for other problems.
A way to keep the problem linear and in the vector domain is to add an unknown and link
it to the original equation. This is call the method of Lagrangian multipliers. For our
problem, the optimization criteria J becomes

J=K' -RV-K—/l-(KT 1-1).
The new variable is the Lagrangian multiplier A, and the optimization criteria is linear in

A and quadratic in k. What we will do is relax the constraint on k and apply the unbiased
constraint on the solution to find a value for A to complete our solution.

We proceed by taking the gradient of the optimization criteria with respect to k and set it
equal to zero and find a solution:
=2-R,-k—4:1=0
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We use the unbiased condition to find the value of the new variable 1 :

KT.lzng.va.1:1

k

A 1

2 - 1. R*-1
Note that
1" -R,*-1=[ sum of all the terms of R,* |.
This leaves us with an equation for the linear estimator gain k:
R’-1
1R
This gives us a minimum value of the optimization criteria of
1
= —1T R :
We will close with an explicit expression for the inverse of the covariance matrix of v:

K:
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The minimum value of the optimization criteria is
oy -0, '(1_,02)

2 2
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and the linear estimator gain K is

Kk — 1 '{O'zz_p'al'o'z}

~ ol+oi-2p-0,-0, |oi—p-c,0,|
This basic technique and result can be applied to higher order problems. In particular,
see that problem 1-3 becomes simply a matter of writing the result, followed by a simple

algebraic step. In fact, for any number of uncorrelated measurements M, the general
result is obvious from
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