Matrix Inversion Lemma

The Matrix Inversion Lemma is the equation

$$
\begin{equation*}
\left(A-B \cdot D^{-1} \cdot C\right)^{-1}=A^{-1}+A^{-1} \cdot B \cdot\left(D-C \cdot A^{-1} \cdot B\right)^{-1} \cdot C \cdot A^{-1} \tag{1}
\end{equation*}
$$

Proof: We construct an augmented matrix A, B, C, and D and its inverse:

$$
\left[\begin{array}{ll}
A & B \tag{2}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]
$$

We then construct the two products

$$
\left[\begin{array}{ll}
A & B \tag{3}\\
C & D
\end{array}\right] \cdot\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{ll}
A \cdot E+B \cdot G & A \cdot F+B \cdot H \\
C \cdot E+D \cdot G & C \cdot F+D \cdot H
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
E & F \tag{4}\\
G & H
\end{array}\right] \cdot\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
E \cdot A+F \cdot C & E \cdot B+F \cdot D \\
G \cdot A+H \cdot C & G \cdot B+H \cdot D
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

Submatrices in (3) and (4) are broken out to form eight matrix equations:

$$
\begin{align*}
& A \cdot E+B \cdot G=I \tag{5}\\
& A \cdot F+B \cdot H=0 \tag{6}\\
& C \cdot E+D \cdot G=0 \tag{7}\\
& C \cdot F+D \cdot H=I \tag{8}\\
& E \cdot A+F \cdot C=I \tag{9}\\
& E \cdot B+F \cdot D=0 \tag{10}\\
& G \cdot A+H \cdot C=0 \tag{11}\\
& G \cdot B+H \cdot D=I \tag{12}
\end{align*}
$$

Combining (5) through (12) in various orders gives two sets of equations for E, F, G and H from A, B, C, and D :

$$
\begin{gather*}
E=\left(A-B \cdot D^{-1} \cdot C\right)^{-1} \tag{13}\\
F=-\left(A-B \cdot D^{-1} \cdot C\right)^{-1} \cdot B \cdot D^{-1} \tag{14}\\
G=-D^{-1} \cdot C \cdot\left(A-B \cdot D^{-1} \cdot C\right)^{-1} \tag{15}\\
H=D^{-1}+D^{-1} \cdot C \cdot\left(A-B \cdot D^{-1} \cdot C\right)^{-1} \cdot B \cdot D^{-1} \tag{16}
\end{gather*}
$$

and

$$
\begin{gather*}
E=A^{-1}+A^{-1} \cdot B \cdot\left(D-C \cdot A^{-1} \cdot B\right)^{-1} \cdot C \cdot A^{-1} \tag{17}\\
F=-A^{-1} \cdot B \cdot\left(D-C \cdot A^{-1} \cdot B\right)^{-1} \tag{18}\\
G=-\left(D-C \cdot A^{-1} \cdot B\right)^{-1} \cdot C \cdot A^{-1} \tag{19}\\
H=\left(D-C \cdot A^{-1} \cdot B\right)^{-1} \tag{20}
\end{gather*}
$$

The proof is completed by combining either (13) and (17) or (16) and (20). Conditions are that all the involved inverses exist.

