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Z Transforms and Digital Filters

• Difference equations
– Z transforms classically used in analysis
– Digital filter algebraic definitions

• Digital trackers
– Stationary filters easily analyzed
– Adaptive filters characterized and bounded

• Bounds of parameters bound Z transform results
• Z transform characterizations useful in interpretation
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Z Transform Definition
• Laplace transform analogy for uniformly sampled 

filters

• Function e(t) is series of impulses at tk=k.T
• Inversion integral

• Variable change linking the analogy is

Where 1/T is sample rate

( ) ( )
0

k

k

F z e k z
∞

−

=

= ⋅∑( ) ( ) ( )
0

expF s e t s t dt
∞

= ⋅ − ⋅ ⋅∫

( )expz s T= ⋅

( ) ( ) 11
2

nf n F z z dz
jπ

−= ⋅ ⋅ ⋅∫



Copyright 2001-2006 by James K Beard, an Unpublished Work.  All rights reserved.

Z Transform Pairs
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Laplace-Stieltjes Transforms
• Form is

• Where φ(t)
– Constant except for steps at tn=nT
– Size of steps is f(n)

• A Z transform for mathematicians
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Digital Filters and Difference Equations

• Simple digital filter

• Taking Z transform of both sides:

• Solving for y(z)
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Transfer Function
• First term

– Ringing or settling from initial conditions
– Decays to zero in stable filter (|a|<1)
– Ignored in transfer function from input

• Transfer function
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Initial and Final Values of f(n)

• From definition

• Initial value is easy

• Final value from
( ) ( )0 limf F zz= →∞
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Final Value (Continued)

• The logic is

• Taking a second limit
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Noise Variance Propagation

• Variance difference equation

• Z transform of output variance

• Steady state output variance 
(why?)
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Frequency Response

• Follows from variable changes

• Z transform is then

• This is a frequency response
– Same equation as Fourier summation
– From Z transform for z on unit circle (|z|=1)
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Generalization Using Vectors

• Order N digital filter difference equation

• And the Z transform is

• Solving for y(z)
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The Poles
• Denominator polynomial

– Determinant |A - z.I|
– Order N

• Poles of Y(z) are
– Roots of denominator polynomial
– The characteristic values of matrix A
– Filter stable is all magnitudes less than 1
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Example
• Constant velocity model

• Z transform of output is
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Decoupling the Matrix Equation

• Make a variable change

• The new difference equation is

• Select C as the characteristic vector 
matrix of A
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The Form of C and Λ
• C is characteristic vector matrix

– Columns of C-1 are characteristic vectors
– If A is symmetric, then C-1 = CT

• The matrix Λ is diagonal if
– No characteristic values are repeated

• Repeated characteristic values
– Matrix Λ is not diagonal
– Submatrices of Jordan canonical form
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Characteristic Values

• Any characteristic value λ and vector c

• Jordan canonical form submatrices
A c cλ⋅ = ⋅
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Time Functions for Multiple 
Characteristic Values

• Terms appearing in the Z transform

• Corresponding time series terms
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Form of Λ Matrix
• Form of inverse of [z.I – Λ]
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Useful Books
• “Introduction to matrix analysis” (Second 

Edition), Richard Bellman, McGraw-Hill, 
1970

• “Operational mathematics,” R. V. 
Churchill, McGraw-Hill (1958)

• “Theory and application of the Z transform 
method,” E. I. Jury, John Wiley & Sons, 
Inc. (1964)


