

A Brief Description of of Z Transforms

James K Beard

Z Transforms and Digital Filters

- Difference equations
- Z transforms classically used in analysis
- Digital filter algebraic definitions
- Digital trackers
- Stationary filters easily analyzed
- Adaptive filters characterized and bounded
- Bounds of parameters bound Z transform results
- Z transform characterizations useful in interpretation

Z Transform Definition

- Laplace transform analogy for uniformly sampled filters

$$
F(s)=\int_{0}^{\infty} e(t) \cdot \exp (-s \cdot t) \cdot d t \quad F(z)=\sum_{k=0}^{\infty} e(k) \cdot z^{-k}
$$

- Function $e(t)$ is series of impulses at $t_{k}=k \cdot T$
- Inversion integral

$$
f(n)=\frac{1}{2 \pi j} \cdot \oint F(z) \cdot z^{n-1} \cdot d z
$$

- Variable change linking the analogy is

$$
z=\exp (s \cdot T)
$$

Where $1 / T$ is sample rate

Z Transform Pairs

\[

\]

Laplace-Stieltjes Transforms

- Form is

$$
\int_{0}^{\infty} \exp (-s \cdot t) \cdot d \Phi(t)
$$

- Where $\phi(\mathrm{t})$
- Constant except for steps at $\mathrm{t}_{\mathrm{n}}=\mathrm{nT}$
- Size of steps is $f(n)$
- A Z transform for mathematicians

Digital Filters and Difference Equations

- Simple digital filter

$$
y(n+1)=(1-a) \cdot x(n)+a \cdot y(n)
$$

- Taking Z transform of both sides:

$$
z \cdot Y(z)-z \cdot y(0)=(1-a) \cdot X(z)+a \cdot Y(z)
$$

- Solving for $\mathrm{y}(\mathrm{z})$

$$
Y(z)=\frac{z}{z-a} \cdot y(0)+\frac{1-a}{z-a} \cdot X(z)
$$

Transfer Function

- First term
- Ringing or settling from initial conditions
- Decays to zero in stable filter ($|\mathrm{a}|<1$)
- Ignored in transfer function from input
- Transfer function

$$
G(z)=\frac{Y(z)}{X(z)}=\frac{1-a}{z-a}
$$

Initial and Final Values of $f(n)$

- From definition

$$
F(z)=\sum_{n=0}^{\infty} z^{-n} \cdot f(n)
$$

- Initial value is easy

$$
f(0)=\lim _{z \rightarrow \infty} F(z)
$$

- Final value from

$$
Z(f(n+1)-f(n))=z \cdot F(z)-z \cdot f(0)-F(z)
$$

Final Value (Continued)

- The logic is

$$
\begin{gathered}
(z-1) \cdot F(z)-f(0)= \\
\lim _{p \rightarrow \infty} \sum_{n=0}^{p}(f(n+1)-f(n)) \cdot z^{-n}
\end{gathered}
$$

- Taking a second limit ${ }^{z \rightarrow 1}$

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{z \rightarrow 1}(z-1) \cdot F(z)
$$

Noise Variance Propagation

- Variance difference equation

$$
\sigma_{y}^{2}(i+1)=(1-a)^{2} \cdot \sigma_{x}^{2}(i)+a^{2} \cdot \sigma_{y}^{2}(i)
$$

- Z transform of output variance

$$
V_{y}(z)=\frac{z}{z-a^{2}} \cdot \sigma_{y}^{2}(0)+\frac{(1-a)^{2}}{z-a^{2}} \cdot V_{x}(z)
$$

- Steady state output variance (why?)

$$
\sigma_{y}^{2}=\frac{1-a}{1+a} \cdot \sigma_{x}^{2}
$$

Frequency Response

- Follows from variable changes

$$
z=\exp (s \cdot T), s=j \cdot \omega
$$

- Z transform is then

$$
F(\omega)=\sum_{n=0}^{\infty} f(n) \cdot \exp (-j \cdot \omega \cdot T)
$$

- This is a frequency response
- Same equation as Fourier summation
- From Z transform for z on unit circle $(|z|=1)$

Generalization Using Vectors

- Order N digital filter difference equation

$$
\underline{y}(n+1)=A \cdot \underline{y}(n)+B \cdot \underline{x}(n)
$$

- And the Z transform is

$$
z \cdot \underline{Y}(z)-z \cdot \underline{y}(0)=A \cdot \underline{Y}(z)+B \cdot \underline{X}(z)
$$

- Solving for $y(z)$

$$
\underline{Y}(z)=-[A-z \cdot I]^{-1} \cdot[B \cdot \underline{X}(z)+z \cdot \underline{y}(0)]
$$

The Poles

- Denominator polynomial
- Determinant |A-z•I|
- Order N
- Poles of $\underline{Y}(z)$ are
- Roots of denominator polynomial
- The characteristic values of matrix A
- Filter stable is all magnitudes less than 1

Example

- Constant velocity model

$$
\underline{x}=\left[\begin{array}{l}
\text { Position } \\
\text { Velocity }
\end{array}\right], A=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right]
$$

- Z transform of output is

$$
\underline{Y}(z)=\left[\begin{array}{cc}
\frac{1}{z-1} & \frac{T}{(z-1)^{2}} \\
0 & \frac{1}{z-1}
\end{array}\right] \cdot[B \cdot \underline{X}(z)+z \cdot \underline{y}(0)]
$$

Decoupling the Matrix Equation

- Make a variable change

$$
\underline{w}(n)=C \cdot \underline{y}(n)
$$

- The new difference equation is

$$
\underline{w}(n+1)=C \cdot A \cdot C^{-1} \cdot \underline{w}(n)+C \cdot B \cdot \underline{x}(n)
$$

- Select C as the characteristic vector matrix of A

$$
C \cdot A \cdot C^{-1}=\Lambda
$$

The Form of C and Λ

- C is characteristic vector matrix
- Columns of C^{-1} are characteristic vectors
- If A is symmetric, then $\mathrm{C}^{-1}=\mathrm{C}^{\top}$
- The matrix Λ is diagonal if
- No characteristic values are repeated
- Repeated characteristic values
- Matrix Λ is not diagonal
- Submatrices of Jordan canonical form

Characteristic Values

- Any characteristic value λ and vector $\underline{\mathbf{c}}$

$$
A \cdot \underline{c}=\lambda \cdot \underline{c}
$$

- Jordan canonical form submatrices

$$
\Lambda_{R}=\left[\begin{array}{ccc}
\lambda_{R} & 1 & 0 \\
0 & \lambda_{R} & 1 \\
0 & 0 & \lambda_{R}
\end{array}\right]
$$

Time Functions for Multiple Characteristic Values

- Terms appearing in the Z transform

$$
\frac{z^{i}}{(z-a)^{i}}, 1 \leq i \leq N_{R}
$$

- Corresponding time series terms

$$
n^{i-1} \cdot a^{n}
$$

Form of Λ Matrix

- Form of inverse of $[z \cdot I-\Lambda]$

$$
\left[z \cdot I-\Lambda_{R}\right]^{-1}=\left[\begin{array}{ccc}
\frac{1}{z-\lambda_{R}} & \frac{1}{\left(z-\lambda_{R}\right)^{2}} & \frac{1}{\left(z-\lambda_{R}\right)^{3}} \\
0 & \frac{1}{z-\lambda_{R}} & \frac{1}{\left(z-\lambda_{R}\right)^{2}} \\
0 & 0 & \frac{1}{z-\lambda_{R}}
\end{array}\right]
$$

Useful Books

- "Introduction to matrix analysis" (Second Edition), Richard Bellman, McGraw-Hill, 1970
- "Operational mathematics," R. V. Churchill, McGraw-Hill (1958)
- "Theory and application of the Z transform method," E. I. Jury, John Wiley \& Sons, Inc. (1964)

