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Introduction
In the presentation for the Philadelphia IEEE of November 16, 2021, an Appendix was provided that 
presented or expanded on several topics in the talk.  One of these topics was on computing estimates of 
mean and covariance matrix from a sequence of random vectors.  This is helpful when using particle 
filters,  unscented transformations, and related methods of tracking and estimation.  The presentation in
that Appendix, while providing the correct expressions for the estimates, provides insufficient detail in 
the mathematics supporting these estimates.  A simpler and more complete presentation of the 
mathematics of estimates of sample mean and covariance from a sequence of random vectors is given 
below.

Problem Statement

Classical Problem
We are presented with a sequence of N random vectors of K elements each, all with the same 
mean and with a Gaussian error with the same covariance, or at least with an error distributed 
according to a law that allows mean and variance to be defined.  We wish to provide the most accurate 
possible estimate of the mean, and also the most accurate possible estimate of the covariance.

Sophisticated Tracker Problem
In some trackers, specifically particle filters and trackers based on unscented transforms, and other 
trackers based on a Bayesan estimate or the Chapman-Kolmogorov equation, the mean state vector is 
estimated by a weighted average of the noisy vectors as produced by modeling their values with 
specific values of the noise in the state vector propagation equations.  The estimator of the covariance 
matrix must reflect this weighting.

Probability Functions

Gaussian, Zero Mean, Unity Variance
We begin with the probability density function of a Gaussian variable with zero mean and unity 
variance, from Abramowitz & Stegun 26.2.1:

p(x)= 1

√2π
⋅exp(− x2

2 ) . (1)

We will take (1) as an axiom.
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General Mean and Variance
If a variable y has mean μ and variance σ , we can write it as proportional to a zero mean, unity
variance Gaussian random variable x ,

y=σ⋅(x+μ) . (2)

The probability density function of y becomes

p( y )= 1
√2π σ

⋅exp(− y2

2σ 2) . (3)

Note that the probability density function has meaning as an integrand or the kernel of an integral, and 
the Jacobian determinant that follows from the differential of the integral with the variable change must
be incorporated into the probability density function.  In the case of (1), (2) and (3), the Jacobian 
determinant is the standard deviation, or the square root of the variance, σ .

Vector of Random Variables
The joint probability density function for K uncorrelated Gaussian random variables, all with zero 
mean zero and unity variance, is

p( y⃗ )=∏
i=1

K
1

√2π
⋅exp(− y i

2

2 )= 1

√(2π )K
⋅exp(− y⃗T⋅⃗y

2 ) . (4)

General Vector Mean and Covariance
We can use a vector of uncorrelated zero mean, unity variance random variables to produce a vector 
with a given mean z⃗0 and covariance P with the variable change

z⃗=P1/2⋅⃗y+ z⃗0 (5)

where P1/2 is a matrix square root of P ,

P=[P1/2]T⋅[P1 /2]  (upper trianguar Cholesky factor)
     or
P=[P1 /2]⋅[P1/2]T  (lower triangular Cholesky factor)

. (6)

The simplest way to obtain a matrix square root is by Cholesky decomposition.  When P is positive 
definite, the Cholesky factorization is real, and is unique within the choice of sign for the K square 
roots in the decomposition.  Other matrix square roots are related to either the upper triangular or lower
triangular Cholesky factorization C by a similarity transformation,

P1/2=M−1⋅C⋅M (7)

where M is any nonsingular K×K matrix.
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Given (5), the probability density function of z⃗ is

p( z⃗)= 1

√(2π )K|P|
⋅exp(−1

2
⋅( z⃗− z⃗0)

T⋅P−1⋅( z⃗− z⃗0)) . (8)

Note that we have included the Jacobian determinant of |P|1 /2 .  Equation (8) is given in Gelb, 2.2.39 
page 34.

Set of N Random Vectors
A set of N random vectors with the same mean z⃗0 and covariance P has the joint probability 

density function

p ( z⃗i , i=1...N ) =    ∏
i=1

N
1

√(2π )K|P|
⋅exp(−1

2
⋅( z⃗i− z⃗0)

T⋅P−1⋅( z⃗i− z⃗0))
=    

1

√(2π )K⋅N⋅|P|N
⋅exp(−1

2
⋅∑
i=1

N

( z⃗i− z⃗0)
T⋅P−1⋅( z⃗ i− z⃗0))

. (9)

Estimating Mean and Covariance
We use the method of maximum likelihood here, because of its simplicity and the fact that this 
approach has been shown to provide estimators that are unsurpassed in minimizing the variance of the 
estimators for any given data set.

The method of maximum likelihood requires that you write a Bayesian probability density function for 
the data y⃗ , given true values x⃗ of the parameters to be estimated, which we will call the likelihood
function L( x⃗) :

L( x⃗)=p( y⃗|x⃗ ) (10)

By maximizing the likelihood function L( x⃗) , the method finds the values of the parameters x⃗

which makes the observed data most likely.

Classical Unweighted Estimators
We use (9) to write the likelihood function

L( z⃗0 , P|z⃗i)=
1

√(2π )K⋅N⋅|P|N
⋅exp(−1

2
⋅∑
i=1

N

( z⃗i− z⃗0)
T⋅P−1⋅( z⃗ i− z⃗0)) . (11)

This probability density function takes a simpler form when the natural logarithm is taken.  Since the 
natural logarithm is monotonic, thus maximizing the peak not change the result, even though the 
equations are dramatically simplified.  The log likelihood function is
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l( z⃗0 , P|z⃗i)=− K⋅N
2

⋅ln (2π )−N
2
⋅ln (|P|)−1

2
⋅∑
i=1

N

( z⃗ i− z⃗0)
T⋅P−1⋅( z⃗i− z⃗0) . (12)

We begin by maximizing the log likelihood function as a function of z⃗0 ,

∂ l( z⃗0 , P|z⃗i)
∂ z⃗0

=∑
i=0

N

P−1⋅( z⃗i− z⃗0)=0⃗ (13)

which immediately leads us to the classical result, the sample mean:

Est( z⃗0)=
1
N

⋅∑
i=1

N

z⃗i . (14)

Equation (14) is linear in the data, and such MLE-derived estimators are known to meet the Cramer-
Rao bound, which is the minimum possible variance for the given data set.  This minimum possible 
variance can be found from the second derivative of the log likelihood function, which produces the 
negative of the Fisher information matrix, and the Fisher information matrix is the inverse of the 
optimum covariance matrix:

−Cov {Est ( z⃗0)}
−1=

∂2l( z⃗0 ,P|z⃗i)
∂ z⃗0

2
=−N⋅P−1

(15)

or, the Cramer-Rao bound, which is achieved by the estimator given by (14), is

Cov {Est( z⃗0)}=
1
N

⋅P . (16)

Equation (16) gives the Cramer-Rao bound, and direct evaluation of the covariance of the estimate 
from (14) shows that this is the covariance of the estimate.

Maximizing the likelihood function as a function of P is a bit more complex.  We note that 
derivatives of the trace or determinant of a matrix with respect to the matrix are defined classically 
(Gelb, 2.1-72 and 2.1-75 p. 23),

∂
∂A

trace[B⋅A⋅C ] =   BT⋅CT

∂
∂ A

|B⋅A⋅C| =   |B⋅A⋅C|⋅A−T (17)

so that the second term in (12) is amenable to a derivative with respect to P and the third term is also,
if we consider the scalar quadratic form to be the trace of a 1×1 matrix.

We can simplify the algebra by taking the partial derivatives with respect to P−1 rather than P , 

which has the effect of avoiding a multiplier of P−2 but we will take the partial derivative with 

Philadelphia IEEE Page 5 of 8



Addendum – Multiple Target Tracking, by James K Beard November 16, 2021

respect to P so that we may more directly address the Cramer-Rao bound for Est(P) later.  Taking 
the gradient of the log likelihood function (12) with respect to P and using (17),

∂ l( z⃗0 , P|z⃗i)
∂P

=−N
2
⋅P−1+[ 1

2
⋅∑
i=1

N

( z⃗i− z⃗0)⋅( z⃗i−z⃗0)
T]⋅P−2=0 (18)

which gives us

EstTD (P)= 1
N

⋅∑
i=1

N

( z⃗i− z⃗0)⋅( z⃗ i− z⃗0)
T . (19)

The issue that must be resolved to provide a practical estimator is that “truth” data for the mean, x⃗0 , 

is required to evaluate the estimator, and, of course, x⃗0 is not available in practice; we indicate this 

problem with the subscript “TD.”  Conventionally, the estimator of x⃗0 given in  (14) is used in lieu of

truth data which introduces a magnitude bias, because x⃗0 is correlated with each x⃗ i .  Removing 

this bias gives us the classical result

Est(P)= 1
N−1

⋅∑
i=1

N

( z⃗i−Est( z⃗0))⋅( z⃗i−Est( z⃗0))
T . (20)

Equation2 (19) and (20) are not linear in the data and thus (20) provides an estimator that does not 
achieve the Cramer-Rao bound.  We do know from the properties of maximum likelihood estimators 
that the modified estimator of (20) is nonlinear, but the covariance of the estimator approaches the 
Cramer-Rao bound as N increases, and that deviation of the covariance from the Cramer-Rao bound 
is of order 1/N .

The Cramer-Rao bound is found as the second gradient of the log likelihood function with respect to
P , which is a result of tensor order 4; vectors are of tensor order 1 and matrices are of tensor order 

2, and obtaining a simple expression for the covariance of P requires inverting a quantity of tensor 
order 4.  Finding the Cramer-Rao bound for P is most simply treated by augmenting the set of N

vectors of K elements each to form a single vector with K2 elements, with a K2×K2 covariance 
matrix.

Within ordinary linear algebra principles, the elements of the K 2×K2 covariance matrix can be 
computed in blocks of K×K matrices using conventional linear algebra methods as follows.

We write the gradient of P with respect to one of its elements pi0 , j0 by P' i0 , j0 ,

P' i0 , j0=
∂P

∂ p i0 , j0
=[δ (i−i 0)⋅δ ( j− j 0)] . (21)

We find the gradient of P−1 with respect to an element of P from
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P⋅P−1 =    I

P' i0 , j0⋅P
−1+P⋅ ∂P−1

∂ p i0 , j0
=    0

(22)

as

∂PP−1

∂ pi0 , j0
=−P−1⋅P ' i0, j0⋅P

−1=−P−1⋅[δ (i−i0)⋅δ ( j− j 0)]⋅P−1=− p⃗invi0⋅⃗pinv j 0
T

(23)

where p⃗inv i is column i of P−1 (which is the same as row i of P−1 ).

A total of K2 elements of the K 2×K2 Fisher information matrix is given by the elements of

∂2l( z⃗0 ,P|z⃗i)
∂P⋅∂ pi0 , j0

=    + N
2
⋅⃗pinv i0⋅⃗pinv j0

T

      −[∑i=1

N

( z⃗i− z⃗0)⋅( z⃗i− z⃗0)
T]⋅[P−1⋅⃗pinvi 0⋅⃗pinv j0

T + p⃗invi0⋅⃗pinv j0
T ⋅P−1 ]

. (24)

Estimate of Vector by Weighted Average
The particle Kalman filter and the unscented Kalman filter use a weighted average to estimate the state 
vector,

EstW ( x⃗0)=
∑
i=1

N

w i⋅x⃗i

∑
i=1

N

wi

. (25)

The covariance of this estimate is found directly as

Cov {EstW ( x⃗0)− x⃗0}=
∑
i=1

N

wi
2

(∑
i=1

N

wi)
2
⋅P . (26)

An estimate of this covariance is available by using the estimate of P from (20).  Note that, for 
nonnegative w i ,

1
N

≤
∑
i=1

N

wi
2

(∑
i=1

N

w i)
2
≤1 . (27)
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Equality to 1/N is achieved with all of the w i are equal, which is the unweighted case.  Equality to 

1 is achieved when only one of the weights is nonzero.
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