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Multiple Target Tracking: APPENDIX
Tracking and Data Fusion with a Requirements Perspective
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Classic Kalman Filter Equations
The classic extended Kalman filter (EKF) equations consist of extrapolation of a state vector over time,
extrapolation of its covariance matrix over time, and an update of the state vector and its covariance by 
fusing this result with measured data.  The update performs a linear, unbiased data fusion of sensor 
measurements and the state vector at the effective time of the measurements.  When transformations in 
the equations are nonlinear or noises that drive state vectors, or corrupt measurement signals are non-
Gaussian, the random errors are non-Gaussian and the EKF equations track variances.

The State Vector and Covariance Extrapolation Equations
The analog, and most general, state vector extrapolation is the differential equation, is
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d x⃗
dt

= f⃗ ( x⃗)+G⋅w⃗ ,  x⃗ (tOLD )= ⃗xOLD . (1)

A process noise driving function w⃗  is included in (1), which is mapped to the state space by a mapping
matrix G .  The driving noise vector w⃗  is made up of elements that are Gaussian noise with mean 
zero, and w⃗  has covariance Q .  The mapping matrix G  in (1) maps the process noise to the state 
vector when the process noise is not the same rank as the state vector.  The state vector equation driving
noise is sometimes called “plant noise” because some early Kalman filter applications modeled 
industrial plants.  We will use the term “process noise.”

When the differential equation is linear or sufficiently near linear for a linear approximation to achieve 
sufficient accuracy, we extrapolate the state vector using the discrete state vector extrapolation 
equation,

x⃗EXT=Φ(t EXT , t OLD)⋅⃗xOLD ,  Φ(t EXT , tOLD)=
∂ x⃗EXT

∂ x⃗OLD

. (2)

The covariance extrapolation is a matrix equation, the linear variance equation,

d P
dt

=F⋅P+P⋅FT +G⋅Q⋅GT ,  F=∂ f⃗ ( x⃗ )
∂ x⃗

, P (tOLD)=POLD . (3)

The linearized form of the covariance extrapolation is

PEXT=Φ( tNEW , tOLD)⋅POLD⋅Φ
T(tNEW ,tOLD)+G⋅Q⋅GT . (4)

The Measurement Equations
We begin with the measurement equation.  A vector of measurements y⃗  is a function of the state 
vectors, and is corrupted by noise,

y⃗= h⃗( x⃗ )+ v⃗ (5)

where v⃗  is a vector of zero mean Gaussian measurement noise, with covariance R .  The linearized 
form is

y⃗=H⋅⃗x+ v⃗ ,  H=
∂ h⃗( x⃗)
∂ x⃗

. (6)

The Update Equations
Kalman filtering can be done with analog computers, and this was done in early inertial navigation 
systems and in state estimation in industrial facilities.  A continuously updated state vector estimate is 
defined by its differential equation,
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d x⃗
dt

=F( t)⋅⃗x+ K (t)⋅( y⃗ ( t)−h⃗ ( x⃗)) . (7)

The Kalman gain matrix K (t)  is defined by minimizing the trace of the covariance matrix of the 
updated state vector,

d P
dt

=F⋅P+P⋅FT +G⋅Q⋅GT−K⋅R⋅K T
(8)

and is

K (t)=P (t)⋅HT( t)⋅R−1(t) . (9)

The linearized update is

x⃗NEW= x⃗EXT+K⋅( y⃗−H⋅⃗xEXT ) . (10)

The extrapolated and updated covariance are separate with discrete updates.  The extrapolated 
covariance can be seen to be a linearized form of (8),

PEXT=Φ⋅POLD⋅Φ
T+G⋅Q⋅GT . (11)

The updated covariance can be seen from (10) to be

PNEW=(I−K⋅H)⋅PEXT⋅(I−K⋅H )T +K⋅R⋅K T . (12)

Using (12) to define the Kalman gain matrix K  to minimize the trace of PNEW  results in

K=PEXT⋅HT⋅(H⋅PEXT⋅HT+R)−1
. (13)

Substituting the Kalman gain matrix from (13) into the covariance equation (12) gives alternative 
forms, with some algebra, including the Matrix Inversion Lemma (see below):

P−1
NEW=P−1

EXT+HT⋅R−1⋅H . (14)

One form that is obtained using the Matrix Inversion Lemma, K=(I−K⋅H )⋅PEXT , is often given in 

the literature because of its simplicity and the resulting usefulness in some algebraic developments, but 
use of this simple form for computation in software almost universally results in failure of the Kalman 
filter because of numerical errors.  The form in (12) is called the Joseph Stabilized Form and should 
always be used in first-cut implementations.  Equation (9) also holds for the discrete case, but the 
Kalman gain must be available first to compute PNEW .  For deliverable software for deployed systems, 

a square root filter is far more robust than any of these equations.

The Discrete Kalman State Update as a Markov Process
We show the stability of the Kalman filter here.  Equation (10) can be written as a Markov process 
update,
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x⃗NEW=(I−K⋅H )⋅x⃗EXT +K⋅y⃗ . (15)

The Markov transition matrix M  is (I−K⋅H ) ,

M=(I−K⋅H )=( I−PNEW⋅HT⋅R−1⋅H )
 =PNEW⋅PEXT

−1 (16)

Using (14) for PNEW  in (16) gives a form for M  that is simple and well-conditioned numerically,

M=PNEW⋅PEXT
−1 =(I +PEXT⋅HT⋅R−1⋅H )−1

. (17)

Here we will state a theorem that shows the even part of M=PNEW⋅PEXT
−1  to be positive definite.  We 

can add consideration of the state transition matrix,

x⃗EXT=Φ⋅x⃗OLD (18)

to make an equation updating x⃗NEW  from x⃗OLD  if desired, but the key concern is showing stability 

properties of the Kalman filter, by looking at the  eigenvalues of the Markov transition matrix.  The 
eigenvalues of the state transition matrix are all one, and consideration of the eigenvalues of M  as 
given by (17) suffices for that purpose.

THEOREM:  When matrices A  and B  are symmetrical positive definite matrices, the even part of the
matrix product A⋅B  is positive definite.

PROOF:  We examine the quadratic form

q= v⃗T⋅A⋅B⋅v⃗ (19)

which is equal to a quadratic form on the even part of A⋅B .  We select the vector v⃗  as the ith  right 
eigenvector of B ,

v⃗=b⃗i , (20)

which, left-multiplied by B ,

B⋅⃗b i=[∑j

b⃗ j⋅λ B , j⋅b⃗ j
T]⋅b⃗i=λB, i⋅b⃗i (21)

is b⃗i  scaled by the positive eigenvalue λ B,i .  This leads to an intermediate result for the quadratic 

form,

q=λ B,i⋅b⃗i
T⋅A⋅b⃗i . (22)

Since A  is positive definite, then the value q  of the quadratic form is positive.  This shows that q  is 
positive whenever v⃗  is an eigenvector of either A  or B .  Since both sets of eigenvectors span the 
vector space, and q  is a quadratic polynomial in each of the elements of the vector v⃗ , then if there 
existed a vector v⃗  for which q  was negative, there would be a vector v⃗  for which q  is zero, which 
cannot exist because, by hypothesis, both A  and B  are full rank and positive definite.
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Q.E.D.

We now show that all the eigenvalues of M  as given by (16) do not exceed one: equation (14) shows 
that

v⃗T⋅PNEW
−1 ⋅⃗v≤ v⃗T⋅PEXT

−1 ⋅v⃗ (23)

for any vector v⃗ .  This means that the localization ellipsoid (see next Section) of the updated state 
vector is wholly contained within the localization ellipsoid of the extrapolated state vector before 
update.  Since the variance of the state vector in any direction is nonincreasing in the update operation, 
no eigenvalue of M  exceeds one.

The Mahalanobis Distance and the Localization Ellipsoid
The Mahalanobis distance, which is defined for k  Gaussian random variables x⃗ , with mean μ⃗  and 
covariance S , is the dimensionless scalar

s=√( x⃗−μ⃗)T⋅S−1⋅( x⃗−μ⃗) . (24)

We interpret the Mahalanobis distance by noting that the dimensionless vector y⃗  found from a vector
x⃗  with zero mean Gaussian errors from mean μ⃗  as

y⃗=S−1/2⋅( x⃗−μ⃗) (25)

where S−1 /2  is a Cholesky factor or any other matrix square root of S−1 , and y⃗  is a set of k Gaussian
random variables of mean zero and variance one that are not correlated with one another.  Thus, the 
Mahalanobis distance s  is a measure, conceptually, of how many standard deviations that the vector

x⃗  is from its mean μ⃗ .  We also see that s2= y⃗T⋅⃗y  is a random variable with a chi-squared distribution
with k  degrees of freedom.

The concept of a localization ellipsoid follows from the multivariate Gaussian distribution,

p(x1 , x2 , ... , xk ) =    
1

√(2π )k⋅|S|
⋅exp(−1

2
⋅( x⃗−μ⃗)T⋅S−1⋅( x⃗−μ⃗))

p(s) =    
1

(2π )k /2⋅exp(− s2

2 )  (with Jacobian determinant |S|1/2)
(26)

where we have included p(s) , the probability density function of the Mahalanobis distance.

The presence of the Mahalanobis distance in the kernel of the probability density means that the 
commonly used measures of nearness to the mean, one-sigma limit, median and quartiles, probability 
of containment within a given Mahalanobis distance, etc. are all scaled from the same ellipsoid, defined
as the locus of the vector x⃗  in the quadratic form

( x⃗−μ⃗)T⋅S−1⋅( x⃗−μ⃗)=1 . (27)
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We call the localization ellipsoid the surface or volume defined by the locus of x⃗  in  (27).

Probability Distribution Functions
When looking at association of data to tracks, particularly in cases when k  is large such as batch 
processing, the volume of the localization ellipsoid is an important consideration.  The volume of a 
hypersphere of radius R  is

V= π k /2

Γ( k
2
+1)

⋅Rk

(28)

where Γ(x )  is the gamma function, Γ(n+1)=n ! .  If we look at an ellipsoid with semiaxes of lengths 
equal to the square root of an eigenvalue of S , we have the principal axes of the ellipsoid defined by 

setting s2=k , the mean of the chi-squared distribution.  Then, the formula for the volume of this 

hyperellipsoid replaces each R  in the Rk  in (28) with the square root of an eigenvalue of the 
covariance matrix S  and we have

V= π k /2

Γ( k
2
+1)

⋅|S|1/2 .
(29)

For R=s  we have the volume of a spheroid within Mahalanobis distance s  as

V= π k /2

Γ( k
2
+1)

⋅sk .
(30)

We will use the probability density function from (26) and the volume equation from (30) to find the 
probability distribution of data from its mean as follows.  We begin by finding the surface area of the 
spheroid of (30) as its derivative with respect to s ,

A=dV
ds

= 2π k/2

Γ( k
2)

⋅sk−1

(31)

and write the probability distribution function as

P(|x|≤s)=∫
s=0

s
1

(2π )k /2⋅
2π k /2

Γ( k
2)

⋅t k−1⋅exp(−t 2

2 )⋅dt= 1

2k /2−1 Γ( k
2)

⋅∫
s=0

s

tk−1⋅exp(− t 2

2 )⋅dt .
(32)

With the change of variable t2=u , the integral in (32) is
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P(|x|≤s)= 1

2
k
2⋅Γ(k

2)
⋅∫

u=0

s2

u
k
2
−1
⋅exp(−u

2)⋅du .
(33)

We recognize the integral in (33) as the incomplete gamma function (DLMF 8.2.1),

γ (a , z)=∫
t=0

z

t a−1⋅exp(−t)⋅dt . (34)

The definition provided by (34) allows us to write the probability distribution function of (33) using the
lower incomplete gamma function γ(a ,x )  as

P(|x|≤s)=
γ(k

2
,

s2

2 )
Γ(k

2)
. (35)

The distribution of s2  is, as expected, the chi-squared distribution with k  degrees if freedom, an 
example of a special case of the Gamma distribution, specifically the Erlang distribution, which is a 
scaling generalization of the chi-squared distribution.  The distribution function is available in most 
spreadsheets with proper use of the built-in function GAMMA.DIST (x; α ;β ;C)  where C  is  a 

logical flag, 0 for calculating probability density and 1 for calculating probability distribution.  The 
gamma distribution is a more general distribution using a shape parameter α  and a rate parameter β ,

f (x ;α ,β) =    
βα⋅xα−1⋅exp(−β x )

Γ(α)

F (x ;α ,β) =    ∫
0

x

f (u;α ,β)⋅du

=    
γ(α ,β x )

Γ(α)

. (36)

The probability density function is helpful in understanding decision thresholds for Kalman updates 
and sensor fusion.  These are found by taking the derivative of the distribution function as given by

(33) with respect to either s  or s2 .  In terms of the Mahalanobis distance s , the distribution function 
is

p(s)=
sk−1⋅exp(− s2

2
)

2
k
2
−1

⋅Γ(k
2)

. (37)
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The probability density function of the squared Mahalanobis distance t=s2  is the chi-squared 
distribution

p(t)=
t

k
2
−1
⋅exp(− t

2
)

2
k
2⋅Γ(k

2 )
. (38)

The Innovations Sequence
The innovations sequence is a name commonly given to the Kalman filter error vector from (7) or (10),

e⃗= y⃗ (t)−h⃗( x⃗) . (39)

Analysis shows that, ideally, this quantity is mean zero and uncorrelated from update to update, which 
is how it was dubbed the “innovations” sequence.  Ideally, its covariance is

E=Cov { y⃗ (t)−h⃗( x⃗)}=H⋅PEXT H+R (40)

which gives us a handle on a quantity that we can use to determine whether a particular vector y⃗  is 
suitable for use in updating the track or not,

t=( y⃗ ( t)−h⃗ ( x⃗))T⋅E−1⋅( y⃗ ( t )−h⃗ ( x⃗)) . (41)

The quantity t , or some approximation of it, is used in nearly every practical measurement-to-track 
association algorithm.

Unbiased, Minimum Variance Data Fusion Simplified
Suppose that we have to estimates of a state variable x⃗1  and x⃗2  with random errors that are 

independent between the estimates.  We want a linear unbiased, minimum variance estimate of x⃗ .  We 
first define a linear estimator,

x⃗NEW=A⋅⃗x1+B⋅⃗x2 . (42)

We define a scalar cost function

J=Tr {Cov {x⃗NEW }} . (43)

We need an expression for the covariance of the estimate,

PNEW=Cov {x⃗NEW }=Exp {( x⃗NEW− x⃗)⋅( x⃗NEW− x⃗ )T } (44)

from which we have

J=Tr {Cov {x⃗NEW}}=Tr {Exp {( x⃗NEW− x⃗)T⋅( x⃗NEW− x⃗ )}} . (45)

From (42) and the requirement that the estimator be unbiased, we have
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A+B=I . (46)
Using (42) in (45) gives us

J =    Exp {(A⋅( x⃗1− x⃗)+B⋅( x⃗2− x⃗))T⋅(A⋅( x⃗1− x⃗)+B⋅( x⃗2− x⃗ ))}
=    Exp {( x⃗1− x⃗)T⋅AT⋅A⋅( x⃗1− x⃗)+( x⃗2− x⃗)T⋅BT⋅B⋅( x⃗2− x⃗)}

(47)

where we have used

PEXT=Exp {(( x⃗1− x⃗)T⋅AT⋅A⋅( x⃗1− x⃗ )+( x⃗2− x⃗)T⋅BT⋅B⋅( x⃗2− x⃗ ))} . (48)

To find the optimum, we take the gradient of J  with respect to the matrix A  and set it to zero:

∂ J
∂ A

=    Exp {2 A⋅( x⃗1− x⃗)⋅( x⃗1− x⃗)T−2 B⋅( x⃗2− x⃗ )⋅( x⃗2− x⃗)T}

=    2 A⋅P1−2 B⋅P2=0
. (49)

Combining (46) and (49) gives us, with the aid of the Matrix Inversion Lemma,

A =    (P1+P2)
−1⋅P2

−1=(P1
−1+P2

−1)−1⋅P1
−1

B =    I−(P1
−1+P2

−1)−1⋅P1
−1=(P1

−1+P2
−1)−1⋅P2

−1 . (50)

Evaluating (48) with (50) gives us

PNEW
−1 =P1

−1+P2
−1 . (51)

From (51) we see that

y⃗T⋅PNEW
−1 ⋅y⃗≤ y⃗T⋅P i

−1⋅⃗y , i=1,2 (52)

so that the localization ellipsoid of the merged data is wholly contained within the localization ellipsoid
of both contributing state vectors.

The derivation is trivially extended to multiple datasets.

State Vector and Covariance Matrix from Samples
Particle filters and unscented transformations produce examples of state vectors for a variety of values 
of purpose-defined “noise” driving a Markov process.  Here we look at a generic example of finding 
estimates of a state vector and its covariance matrix from examples of data.

The Unweighted Case
We will begin with the maximum likelihood estimate for the unweighted case.  The data is a set of 
vectors with additive Gaussian noise,

x⃗ i= x⃗+ v⃗ i ,  Cov {v⃗ i}=P , i=[1,2 , ... , N ] . (53)

Philadelphia IEEE Page 9 of 15



Appendix – Multiple Target Tracking, by James K Beard November 16, 2021

The likelihood function, or the probability density function, of the data given the mean, which is the 
truth data, and the covariance of the measurement vectors, is

p( x⃗ i|x ,P)= 1

(2π |P|)N /2⋅exp(−1
2
∑
i=1

N

( x⃗ i− x⃗ )T⋅P−1⋅( x⃗ i− x⃗)) . (54)

The log likelihood function is

L(x , P)=−N
2
⋅ln (2π )− N

2
⋅ln(|P|)−1

2
∑
i=1

N

( x⃗ i− x⃗)T⋅P−1⋅( x⃗ i− x⃗ ) . (55)

To find the maximum likelihood estimate of the state vector x⃗  we take the gradient of the log 
likelihood function with respect to the state vector x⃗  and set that to zero and solve for x⃗ ,

∂ L
∂ x⃗

=∑
i=1

N

P−1⋅( x⃗ i− x⃗ )=P−1⋅∑
i=1

N

( x⃗ i− x⃗)= 0⃗ . (56)

The maximum likelihood estimate of the state vector is simply the sample mean,

x⃗MLE=
1
N
∑
i=1

N

x⃗ i . (57)

We use the classical identities of matrix gradients (76) to take the gradient of the log likelihood 

function with respect to P−1 ,

∂ L
∂P−1 =

N
2
⋅P−1

2
∑
i =1

N

( x⃗ i−x)⋅( x⃗ i−x)T=0 . (58)

Note that this equation for the covariance matrix P  also includes the “truth” information for the state 
vector, x⃗ , so that the solution for the covariance matrix P  includes unavailable data,

PUHOH= 1
N

⋅∑
i=1

N

( x⃗ i−x)⋅( x⃗i−x)T= 1
N

⋅(∑
i=1

N

x⃗ i⋅⃗x i
T−N⋅x⃗⋅x⃗T) . (59)

To deal with the unavailability of a “pure” maximum likelihood estimate for the covariance matrix P , 
we use the maximum likelihood estimate of the state vector in place of the truth data.  The result is

PMLE=
1

N−1
⋅(∑i

x⃗ i⋅⃗x i
T−N⋅⃗xMLE⋅⃗xMLE

T ) . (60)

where we have noted that using x⃗EST  in place of x⃗  in the sum introduces a multiplicative bias of

(1−1/ N )  because x⃗MLE  is correlated with all of the x⃗ i , and we remove this bias by dividing by the 

multiplicative bias, which results in dividing the sum of outer products by N−1  instead of N .
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The Weighted case
The methods used in some Chapman-Kolmogorov related estimates require weighted averages.  The 
weighted average is, explicitly,

x⃗WAV=
1

∑
i=1

N

wi

⋅∑
i=1

N

w i⋅⃗x i .
(61)

We will use the weighted average as the state vector estimate.  We require the covariance of this 
estimate.  The covariance becomes apparent when we use the definition of the data given in (53) in the 
equation (61) for the weighted average,

x⃗WAV= x⃗+ 1

∑
i=1

N

wi

⋅∑
i=1

N

wi⋅⃗v i .
(62)

The covariance of x⃗WAV− x⃗  is

Cov {x⃗WAV− x⃗ }=
∑
i=1

N

wi
2

(∑
i=1

N

w i)
2
⋅R . (63)

We have our best estimate of R , divided by N , from (60), from which the recommended form is

PWAV=
∑
i=1

N

wi
2

(∑
i=1

N

wi)
2
⋅ N

N−1
⋅(∑

i=1

N

x⃗i⋅x⃗ i
T−N⋅⃗xNEW⋅⃗xNEW

T ) . (64)

Theorem:

1
N

≤
∑
i=1

N

wi
2

(∑
i=1

N

w i)
2
≤1 ,  when wi≥0  for 1≤i≤N . (65)

The Cauchy-Schwarz inequality is

(u⃗T⋅⃗v )2≤(u⃗T⋅u⃗)⋅( v⃗⋅v⃗ ) . (66)

Philadelphia IEEE Page 11 of 15



Appendix – Multiple Target Tracking, by James K Beard November 16, 2021

We see from using u⃗=w⃗ , v⃗=1⃗  that the Cauchy-Schwarz inequality shows that the ratio is greater 
than 1/ N .  We prove the ratio is less than or equal to 1  by writing the second inequality in (65) as

∑
i=1

N

wi
2≤∑

i=1

N

∑
j=1

N

wi⋅w j=∑
i=1

N

wi
2+∑

i=1

N

∑
j=1
j≠i

N

wi⋅w j (67)

which is always true when all the w i  are nonnegative (or, are all of the same sign or zero).

Q.E.D.

We note that we have equality with 1  when only one of the w i . is nonzero, and equality with 1/ N  

when all of the w i  are equal.  Since efficiency considerations require keeping N  as small as possible 

in particle and unscented trackers, this may mean that there may be some accuracy disadvantage 
relative to Kalman filter trackers that use statistically efficient Kalman updates.

Matrix Inversion Lemma 
The Matrix Inversion Lemma is useful in algebraic manipulation in estimation theory and other areas.  
Statement of the lemma:

( A−B⋅D−1⋅C )−1
=A−1+ A−1⋅B⋅(D−C⋅A−1⋅B)−1

⋅C⋅A−1 . (68)

Proof follows from construction of an augmented matrix and solving for its inverse by submatrices,

[A B
C D]⋅[E F

G H ]=[ A⋅E+B⋅G A⋅F+B⋅H
C⋅E+D⋅G C⋅F+D⋅H ]=[ I 0

0 I ] (69)

and

[E F
G H ]⋅[A B

C D]=[ E⋅A+F⋅C E⋅B+F⋅D
G⋅A+ H⋅C G⋅B+ H⋅D]=[I 0

0 I ] . (70)

From (69) and (70) the submatrices E , F , G  and H  of the augmented matrix are

E=( A−B⋅D−1⋅C )−1

 =A−1+ A−1⋅B⋅( D−C⋅A−1⋅B)−1
⋅C⋅A−1

(71)

F=−( A−B⋅D−1⋅C )⋅B⋅D−1

 =−A−1⋅B⋅(D−C⋅A−1⋅B)−1 (72)

G=−D−1⋅C⋅( A−B⋅D−1⋅C )−1

 =−(D−C⋅A−1⋅B)−1
⋅C⋅A−1

(73)
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and

H=D−1+D−1⋅C⋅( A−B⋅D−1⋅C)−1
⋅B⋅D−1

 =(D−C⋅A−1⋅B)−1
. (74)

The lemma follows from either (71) or (74).  Alternative formats follow from (72) and (73).  Validity 
requires that all the matrix products and the inverses exist, including the augmented matrices in (69) 
and (70).  Applicability to Kalman gain identities is via

A=P−1
EXT ,  B=HT ,  C=H ,  D=−R . (75)

Matrix Gradients
We repeat here some of the most useful classical identities (Gelb, Applied Optimal Estimation, p. 23)

∂
∂ A

trace[ A] =   I

∂
∂ A

trace [B⋅A⋅C ] =   BT⋅CT

∂
∂ A

trace[ A⋅B⋅AT ] =   A⋅(B+BT )

∂
∂ A

trace (exp( A)) =   exp( AT)

∂
∂ A

|B⋅A⋅C| =   |B⋅A⋅C|⋅A−T

. (76)

Note that quadratic forms that are scalars are equal to the trace of a 1×1  matrix, so the gradients of a 
trace also apply to scalar quadratic forms.  And, the determinant of a 1×1  matrix is a scalar, so that 
the last line of (76) can be applied to a scalar quadratic form.
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