Costas Arrays

What, Why, How, and When
By James K Beard, Ph.D.

Tonight’s Topics

- Definition of Costas arrays
- Significance of Costas arrays
- Methods to obtain Costas arrays
- Principal uses of Costas arrays
- Waveform example
- Other
- The future of Costas arrays
- Conclusions, References

Definition of Costas Arrays

- Costas arrays are permutation matrices with an added constraint, the Costas condition
- Costas condition: When a Costas array matrix and a replica of itself are overlaid, the replica with an offset of an integral number of rows and columns, only one " 1 " overlays another " 1 "
- This models a signal with a Doppler shift being processed with a matched filter

Analyzing Costas Arrays

- Two common representations
- As a permutation matrix
- A row vector, value at each column position designates the positions of the "1"s
- The most often used tool is the difference triangle
- First row: row vector of row indices
- Other rows: Differences between row indices

The Difference Triangle

- Row zero is the sequence of row indices
- N is the order of the Costas array
- Has N elements c(j)
- Row 1 :
- Column j is the difference $\mathrm{c}(\mathrm{j}+1)-\mathrm{c}(\mathrm{j})$

- Has N-1 elements
- Row i:
- Column j is the difference $\mathrm{c}(\mathrm{j}+\mathrm{i})-\mathrm{c}(\mathrm{j})$
- Has N-i elements

Example of Difference Triangle

Costas array	3	4	2	1	5
Row 1	1	-2	-1	4	
Row 2	-1	-3	3		
Row 3	-2	1			
Row 4	2				

Array is a permutation if the first row has no duplicate entries and all are between 1 and N (or between 0 and $\mathrm{N}-1$)

Shifting replica of Costas array right 1 row and down 1 column overlays ones at $(3,1)$ and $(4,2)$

Similarly, each element of the difference matrix provides row and column shifts that Overlay ones

Thus, the Costas condition is equivalent to requiring that values appear only once in any given row

Difference Vectors

- A difference vector is the difference in (row,col) coordinates between two ones in the Costas array matrix
- Each element in the difference triangle corresponds to a difference vector
- Row i, difference triangle entry in column jis d(i,j)
- Difference vector is (i,-d(i,j))
- Another difference vector is its negative, -(i,-d(i,j))
- Costas condition is equivalent to requiring that no two difference vectors be equal

Discrete Ambiguity Function

- A Discrete Ambiguity Function (DAF) is the number of overlaying ones as a function of rows and columns shifted
- Simple construction of DAF:
- Size is $(2 N-1)$ by ($2 \mathrm{~N}-1$)
- Center is the order, N
- From difference triangle; ones at (i,-d(i,j)) and at -(i,-d(i,j))
- Other squares are zero
- Difference vectors in CA are positions of ones in the DAF

Significance of DAF

- Ambiguity function of waveform
- Coherent sum of ambiguity functions of single pulses
- Relative positions and amplitudes of each such ambiguity function are given by positions and numbers in the DAF
- Watch out for a sign convention
- DAF row indices increase as position moves up
- Most matrices such as Costas arrays are represented with row indices that increase as position moves down
- Mismatch will result in an upside-down DAF

Example of DAF

	-4	-3	-2	-1	0	1	2	3	4
4				1					
3			1				1		
2	1					1		1	
1		1		1		1	1		
0					5				
-1			1	1		1		1	
-2		1		1					1
-3			1				1		
-4						1			

Ambiguity Function using CA

Significance of Costas Arrays

- It was always about waveforms from the beginning
- First Costas array definition by John Costas for Project MEDIOR was a frequency shift scheme for sonar waveforms
- Desired effect is that no combination of range and Doppler offsetresults in more than one overlaid pulse
- Huge differences in hydroacoustic and electromagentic waves requires fundamental differences in processing

Huge EM and SONAR Differences

- Velocity of propagation: $3 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$ vs. $1500 \mathrm{~m} / \mathrm{s}$
- Typical frequencies: 10 GHz vs. 40 kHz
- Coherency versus medium
- sea water: poor over widely separated frequencies
- RF: generally excellent except in some cases in the ionosphere
- Acoustic dispersion is high in sea water

Costas Arrays in Waveforms

- Bandwidth spreading schemes in
- Radar
- Sonar
- Communications
- Pseudorandom sequences for use in digital coding
- Other: Add nearly invisible spots at the black level in digital photographs as a digital watermarking technique

Modern Radar Waveforms

- We will give elementary examples
- Practical examples involve layered techniques
- Good reference for use of Costas arrays in tayeredmethods for high performance radar waveforms:
- Radar Signals, by Nadav Levanon and Eli Mozeson

Fundamental Trade Parameters

- For an order of N and simple CW pulses
- CW pulse length τ
- Time-bandwidth product is N^{2}
-Peak to sidelobe ratio is $20 \log _{10} N$
- Shading over the N pulses is not helpful
- Width of each frequency channel is about $\frac{1}{\tau}$
- Ambiguity function of full waveform is coherent sum of ambiguity functions of the CW pulses

Example

- Elementary example: Simple CW chips
- Two-way range resolution $\Delta R=\frac{1}{N} * \frac{c * \tau}{2}$
- Bandwidth $B W \approx \frac{N}{\tau}$
- Frequency Resolution $\Delta F \approx \frac{1}{N * \tau}$
- Ambiguity function sidelobes $20 * \log _{10} N$
- Degraded by sidelobes of chip ambiguity functions
- Accurate estimates determined by simulations

Methods to Obtain Costas Arrays

- Comprehensive search
- Simple and fast for orders up through about 20
- Computation time increases by about a factor of five for each order increase of one
- Number-theoretic generators

- Welch generator, $j=\alpha^{i-1}(\bmod p)$
- Lempel-Golomb generator, $\alpha^{i}+\beta^{j}=1 \in G F\left(p^{k}\right)$
- Taylor generalizations; other generalizations

Online Database

- IEEE DataPort https://ieee-dataport.org/
- DOI 10.21227/H21P42
- Creative Commons Attribution license
- All known Costas arrays to order 1030
- Separate searched database for orders to 29
- Windows GUI utility for search, extraction, analysis; Linux version coming soon

Numbers of Costas Arrays

Principal Uses of Costas Arrays

- Waveforms
- Pseuodrandom frequency hopping scheme
- Single or repeating waveform
- Radar or communications
- Reasons for frequency hopping

- Shared bandwidth - mutual platform interference in radars, communications, cell phones, ...
- Robustness against interference
- Lower probability of detection of emissions

Example Waveform

- Two variations
- Order 14 Costas array, chips simple CW pulses
- Same Costas array, chips are chirped
- One order 14 Costas array
- The only Costas array with only two ones in the central 5×5 square
- Symmetrical, transposition and rotation produces only four "siblings"
- Order 14, TW product is 196, a good match for some radar applications

Waveform Parameters

- Costas array order 14
- $20 \log 10(\mathrm{~N})$ is about 22.3 dB
- Row indices are \{8,13,3,6,10,2,14,5,11,7,1,12,9,4\}
- Chip pulse length $10 \mu \mathrm{~s}$
- Derivative parameters
- Bandwidth 1.4 MHz
- Sample rate 2.9 MHz complex
- Model data length 1024 complex samples

Ambiguity Function Contour

Ambiguty Function Mesh Plot

Central 5X5 Contour

26 of 48

Central 5X5 Mesh Plot

Central Square Contour

Central Square Mesh Plot

Second Example Waveform

- Same Costas array
- \{8,13,3,6,10,2,14,5,11,7,1,12,9,4\}
- Same chip pulse length, $10 \mu \mathrm{~s}$
- Chip upchipl MHz
- Derivative parameters
- Bandwidth 14.1 MHz
- Sample rate 28.2 MHz complex
- Model data length 8192 complex samples

Ambiguity Function w/Chirp

From Another Order 14

Ambiguty Function w/Chirp

Central 5X5 Area

Central 5X5 Area

Central 5X5 Area

Central Square of DAF

Central Square of DAF

Receiver Effects

- There is no time or frequency weighting
- Band edge rolloff in receiver is not modeled
- What happens with band edge weighting?
- For the purposes of illustration
- Taylor weight in frequency domain
- Bandwidth is signal bandwidth
- Crude model of Bessel or linear phase IF filter

Central DAF Square WO/Rolloff

Central DAF Square W/Rolloff

41 of 48

Takeaways

- Changes due to concatenating techniques
- Expected - replicated ambiguity functions of the chirp
- From higher correlation peak - reduced splatter sidelobes relative to central maximum peak
- Otherdesign opportunities
- Shade the chips - by amplitude modulating the transmitter
- Vary the parameters - larger Costas arrays, shorter chips, etc.
- Use other waveforms in the chips, including FSK
- We are just scratching the surface here

Costas Arrays in the Future

- Where are they now?
- High performance radar waveforms
- Cell phone and other communications waveforms
-Coding schemes in digital waveforms
- Digital watermarking
- Where will the be next?
- Anywhere minimal cross-correlation is important
- Wherever math and physics opens a possibility

Conclusions

- Costas array work appeared in volume in the 1970s and early 1980s
- Moore's Law and computer resources for researchers provided opportunities for new work into the 1990s
- Moore's Law and increasing complexity of radar and communications systems provides incentive for new work in the 2000s and 2010s

References (1 of 4)

J. P. Costas, "Medium constraints on sonar design and performance," GE Co., Technical Report Class 1 Rep. R65EMH33, 1965.
E. L. Titlebaum, "Time-frequency hop signals part I: Coding based upon the theory of linear congruences," IEEE Transactions on Aerospace and Electronic Systems, vol. 17, no. 4, pp. 490493, July 1981.
J. P. Costas, "A study of detection waveforms having nearly ideal range-Doppler ambiguity properties," Proc. IEEE, vol. 72, pp. 996-1009, 1984.
S. Golomb and H. Taylor, "Constructions and properties of Costas arrays," Proc. IEEE, vol. 72, pp. 1143-1163, 1984.
S. Golomb, "Algebraic constructions for Costas arrays," J. Comb. Theory Series A, vol. 37 no. 1, pp. 13-21, 1984.

References (2 of 4)

J. Silverman, V. E. Vickers, and J. M. Mooney, "On the number of Costas arrays as a function of array size," Proceedings of the IEEE, vol. 76, no. 7, pp. 851-853, July 1988.
S. W. Golomb, "The T4 and G4 constructions for Costas arrays," IEEE Transactions on Information Theory, vol. 38, pp. 1404-1406, 1992.
J. K. Beard, "Generating Costas arrays to order 200," in $200640^{\text {th }}$ Annual Conference on Information Sciences and Systems, 2006, pp. 1130-1133, DOI 10.1109/CISS.2006.286 635.
C. J. Colburn and J. H. Dinitz, Handbook of Combinatorial Designs, 2nd ed. ISBN 9781584885061: Chapman \& Hali/CRC, 2007, Section VI. 9 by Herbert Taylor on Costas arrays, pp 357-361.
J. K. Beard, J. C. Russo, K. G. Erickson, M. C. Monteleone, and M. T. Wright, "Costas array generation and search methodology," IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 2, pp. 522-538 DOI: 10.1109/TAES. 2007.4285 351, April 2007

References (3 of 4)

S. W. Golomb and G. Gong, "The status of Costas arrays," IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4260-4265, November 2007.
J.K. Beard, "Costas array generator polynomials in finite fields," in $200842^{\text {nd }}$ Annual Conference on Information Sciences and Systems, 2008, pp. 1130-1133 DOI 10.1109/CISS.2008.4 558709.
K. Drakakis, R. Gow, and S. Rickard, "Common distance vectors between Costas arrays," Advances in Mathematics of Communications, vol. 3, pp. 35-52, 2009.
L. Barker, K. Drakakis, and S. Rickard, "On the complexity of the verification of the Costas property," Proc. IEEE, vol. 97, no. 3, pp. 586-593, March 2009.
K. Drakakis, "On the degrees of freedom of Costas permutations and other constraints," Advances in Mathematics of Communications, August 2011 , Volume 5 , Issue 3, pp 435-448, DOI:
10.3934/amc.2011.5.435

References (4 of 4)

J. Jedwab and J. Wodlinger, "The deficiency of Costas arrays," IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7947-7954, December 2014.
C. N. Swanson, B. Correll, Jr., and R. W. Ho, "Enumeration of parallelograms in permutation matrices for improved bounds on the density of Costas arrays," Electronic Journal of Combinatorics, vol. 23, no. 1, pp. 1-14, 2016.
B. Correll, Jr. and J. K. Beard, "Selecting appropriate Costas arrays for target detection," in Proceedings of the 2017 IEEE Radar Conference, 2017, pp. 1261-1266, DOI 10.1109/ RADAR.2017.7944 390.
J. K. Beard, "Costas arrays and enumeration to order 1030," IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H21P42

[^0]
[^0]: N. Levanon and E. Mozeson, Radar Signals, 1st ed. ISBN 978-0-471-47378-7: John Wiley \& Sons, Inc., 2004.

