

- Terrain obscuration
 - Terrain is modeled as random
 - Specify the probability that a clear line of sight will become obscured in a given time
 - Specify the probability that an obscured line of sight will become clear in a given time
- MECO
- Aircraft motion
 - Random maneuvering
 - Hard turn

Copyright 2000 by James K. Beard, an unpublished work. All rights reserved.

Slide 6

- Define the probability that the system will change from state "j" to state "i" in time Δt as Δa_{ij}
- The probability that the system will remain in state "j" in time Δt is

$$\Delta a_{jj} = 1 - \sum_{j \neq i} \Delta a_{ij}$$

Slide 7

Slide 9

Columns are probability vectors

Copyright 2000 by James K. Beard, an unpublished work. All rights reserved

- No characteristic value can exceed 1.0
- When all elements of M are positive
- One and only one characteristic value of M exists that is equal to +1.0
- The corresponding characteristic vector is a positive probability vector

Slide 17

2000 by James K. Beard, an unpublished work. All right

Slide 23

ieht 2000 by James K. Beard, an unpublished work. All riehts

IMM Benefits for the MECO Problem

- Lower process noise
 - Every update but one uses either MECO or non-MECO model with lower process noise
- Enhanced performance
 - Lower process noise allows better association performance
 - Lower process noise provides lower tracker errorsBetter tracker accuracy provides better association

Slide 25

gate accuracy

2000 by James K. Beard, an unpublished work. All rights re

DECO Determination Determination uses All the measurements All the states The covariance matrix Simplest - and best performance Implement in the measurement space Minimize computation

MECO Determination Using the Probability Vector

- The probability vector is an indicator of when MECO occurs
- The probability vector combines propagation using best estimate of likelihood of MECO as a function of time – the A matrix
- The Bayesian update of the probability vector implements a likelihood ratio test in the measurement space

Slide 28

Slide 30

• Conclusion: IMM can provide excellent performance in MECO determination

2000 by James K. Board, an unpublished work. All rights reserved

Aircraft Motion

- Example Singer's aircraft motion model
 - No maneuver, probability P_1
 - Hard turn left, acceleration A, probability $\mathrm{P}_{2}/2$
 - Hard turn right, acceleration A, probability $\mathrm{P_2/2}$
 - Random lateral acceleration, probability P₃

Slide 29

Process Noise for Each Case

- Non-maneuvering: zero
- Hard turn left: zero

ight 2000 by James K. Beard, an unpublished work. All rights re

- Hard turn right: zero
- Random maneuvering: A²/6
- Compares to single model: $A^{2}(P_2+P_3/6)$
- Result: IMM provides improved performance

Interative Multiple Models

ight 2000 by James K. Beard, an unpublished work. All right

