

Today's Topics

- Functions in an IMM
- Discrete Markov models
- Bayesian update of the probability vector
- Definition of a single state vector and covariance matrix from multiple models and the probability vector
- Equal time for the three topics
- Examples - aircraft, MECO

Discrete Markov Process

- A discrete Markov process is based on the concept of a probability vector
- A probability vector is a set of probabilities that a system is in each of a set of mutually exclusive states
- A probability vector p_{i} can be propagated to another probability vector $\mathrm{p}_{\mathrm{i}+1}$ by a linear transformation:

$$
\underline{p}_{i+1}=M \cdot \underline{p}_{i}
$$

Introduction

- Interactive multiple models (IMM)
- Used in Kalman filter
» Extrapolation from last update time to current radar measurement time using target motion model
» Update using estimation theory
- Multiple models used in extrapolation
- IMMs improve accuracy of Kalman filter
- Theory of IMMs is based on
- Discrete Markov processes
- Additional estimation theory

Overview

- Tracker update consists of
- Extrapolation of target position, velocity, and tracker errors from last update time to current radar measurement time
- Correlation or association - match track files to radar returns
- Update the track file with the radar data
- IMM allow
- Use of more than one target motion model
- Improved performance

Examples of a Discrete Markov Process

- Terrain obscuration
- Terrain is modeled as random
- Specify the probability that a clear line of sight will become obscured in a given time
- Specify the probability that an obscured line of sight will become clear in a given time
- MECO
- Aircraft motion
- Random maneuvering
- Hard turn

	Variation of a Probability Vector With Time
	- Define the probability that the system will change from state " j " to state " i " in time Δt as $\Delta a_{i j}$ - The probability that the system will remain in state " j " in time Δt is $\Delta a_{j j}=1-\sum_{j \neq i} \Delta a_{i j}$

Properties of The Markov Matrix
- Columns are probability vectors
- No characteristic value can exceed 1.0
- When all elements of M are positive
- One and only one characteristic value of M
exists that is equal to +1.0
- The corresponding characteristic vector is a
positive probability vector

Markov Matrices
- Left-multiply by transpose of
summation operator
$\frac{1^{T} \cdot M=1^{T}}{\text { - Converse: if all elements of M are }}$nonnegative and this equation holds, M is a Markov matrix - It follows that the product of two Markov matrices is a Markov matrix

The Linear Transformation

- Define a matrix M

$$
M(\Delta t)=\left[\Delta a_{i j}\right]
$$

- The probability vector obeys the linear transformation

$$
\underline{p}(t+\Delta t)=M \cdot \underline{p}(t)
$$

The Summation Operator

- A vector of all ones is a summation operator

$$
\underline{1}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

- Dot or inner product of summation operator with probability vector is one

$$
\underline{1}^{T} \cdot \underline{p}=1
$$

Examples of Markov Matrices

- The terrain obscuration example

$$
M=\left[\begin{array}{cc}
1-P(\text { Obsc } \mid \text { Clear }) & P(\text { Clear } \mid \text { Obsc }) \\
P(\text { Obsc } \mid \text { Clear }) & 1-P(\text { Clear } \mid \text { Obsc })
\end{array}\right]
$$

- The two-state toggle

$$
M=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Copyright 2 200 by ly lames K . Beard, an unpublished work. All rights reeerved.

Characteristic Values
•For terrain obscuration example
$\lambda=1,1-P($ Clear \mid Obsc $)-P($ Obsc \mid Clear $)$
•For two-state toggle example
$\lambda=+1,-1$

Copyright 2000 by lames K. Beard, an unpublished work. All righs reserved

Limiting Values

- Terrain obscuration example
$\underline{p}=\frac{1}{P(\text { Obsc } \mid \text { Clear })+P(\text { Clear } \mid \text { Obsc })} \cdot\left[\begin{array}{c}P(\text { Clear } \mid \text { Obsc }) \\ P(\text { Obsc } \mid \text { Clear })\end{array}\right]$
- Two-state toggle example
- No limiting value independent of initial conditions
- "Mean" limiting value does exist

Copyright 2000 by J James k. Beard, an unpulished work. Al rights reerved.

Solution for
 Time Invariant Case

- Probability vector versus time

$$
\underline{p}(t)=\exp \left(A \cdot\left(t-t_{0}\right)\right) \cdot \underline{p}\left(t_{0}\right)
$$

- Definition of matrix exponential
$M(d t)=\exp (A \cdot d t)=I+\sum_{i=1}^{\infty} \frac{1}{i!} \cdot[A \cdot d t]^{i}$

Copyright 2000 by James K. Beard. an unpubulished work. All rights reserved

Characteristic Vectors

- Terrain obscuration example
$\underline{p}_{1}=c \cdot\left[\begin{array}{l}P(\text { Clear } \mid \text { Obsc }) \\ P(\text { Obsc } \mid \text { Clear })\end{array}\right], \underline{1}^{t} \cdot \underline{p}_{1-P_{C}-P_{O}}=0$
- Second characteristic value <1 when M is positive
- Second characteristic vector not a probability vector
- Two-state toggle example
- Stationary points, not limiting vectors except in an averaging
$\underline{p}_{+1}=\left[\begin{array}{c}.5 \\ .5\end{array}\right], \underline{p}_{-1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ (not a probability vector)
Copyrght 2000 by y lames K . Beard. an unpublished work. All right reeerved. \quad Slide 14

Continuous Stochastic Process

- Define the matrix A as

$$
A=\lim _{\Delta t \rightarrow 0} \frac{M(\Delta t)}{\Delta t}
$$

- When p_{0} is a probability vector a continuous probability vector is given by

$$
\underline{\dot{p}}=A \cdot \underline{p}, \underline{p}\left(t_{0}\right)=\underline{p}_{0}
$$

Bayesian Update of the Probability Vector

- Kalman filter with IMM
- State vector and error covariance extrapolates from last update time to current time
- Probability vector for target in each of K states extrapolated from last update time to current time using a Markov matrix
- Remaining operations to complete the update
- Update the probability vector
- Recombine the state vectors

Use Association Information to Update the Probability Vector
- Method - weight each probability with its association likelihood and renormalize - Begin with the extrapolated probability vector $\underline{\tilde{p}}(t)=\exp \left(A \cdot\left(t-t_{-}\right)\right) \cdot \underline{p}\left(t_{-}\right)$ - Use the likelihood la_{j} from each of the

Unifying the State Vector

- We have K state vectors, covariance matrices, and probabilities
- The system is in only one of K states
- Unification: use the Bayesian mean

$$
\underline{\hat{x}}(t)=\sum_{k} P(k \mid \underline{\underline{y}}) \cdot \underline{\hat{x}}_{k}=\sum_{k} p_{k}(t) \cdot \underline{\hat{x}}_{k}
$$

MECO

- MECO is main engine cutoff
- This is an obvious candidate - three target motion models
- No MECO
- MECO
- Existing model encompassing both cases

Methodology for Update of

 Probability Vector- Updated probability vector using Bayes' theorem
$p_{k}(t)=P(k \mid \underline{y})=\frac{P(\underline{y} \mid k) \cdot \tilde{p}_{k}(t)}{\sum_{k} P(\underline{y} \mid k) \cdot \tilde{p}_{k}(t)}=\frac{l a_{k} \cdot \tilde{p}_{k}(t)}{\sum_{k} l a_{k} \cdot \tilde{p}_{k}(t)}$
- The updated probability vector is
$\underline{p}_{U}(t)=\left[\begin{array}{c}\vdots \\ l a_{j} \cdot \tilde{p}_{j} \\ \vdots\end{array}\right], \underline{p}(t)=\frac{1}{\underline{\underline{T}}^{T} \cdot \underline{p}_{U}(t)} \cdot \underline{p}_{U}(t)$

Unifying the Covariance Matrix

- Covariance matrix follows from Bayesian mean for state vector
$P(t)=\left\langle(\underline{\hat{x}}-\underline{x}) \cdot(\underline{\hat{x}}-\underline{x})^{T}\right\rangle$
$=\sum_{k} p_{k}(t) \cdot P_{k}+\sum_{k} p_{k}(t) \cdot\left(\underline{\hat{x}}_{k}-\underline{\hat{x}}\right) \cdot\left(\underline{\hat{x}}_{k}-\underline{\hat{x}}\right)^{T}$

Copyrght 2000 by lame K. Beard, an unpublisted work. All rights reereved.

MECO System Models

- MECO has not occurred
- Process noise is low
- System model has acceleration along velocity vector
- MECO has occurred about time of last update
- Process noise is very low
- Gravity acceleration only
- MECO occurred sometime since last update
- This is the current model, unmodified
- Process noise high
- Intermediate acceleration along velocity vector

MECO Determination
- Likelihood ratio uses
- All the measurements
- All the states
- The covariance matrix
- Simplest - and best performance
- Implement in the measurement space
- Minimize computation

Aircraft Motion
• Example - Singer's aircraft motion
model
- No maneuver, probability P_{1}
- Hard turn left, acceleration A, probability
$\mathrm{P}_{2} / 2$
- Hard turn right, acceleration A, probability
$\mathrm{P}_{2} / 2$
- Random lateral acceleration, probability P_{3}
Strune

MECO Determination Using the Probability Vector

- The probability vector is an indicator of when MECO occurs
- The probability vector combines propagation using best estimate of likelihood of MECO as a function of time - the A matrix
- The Bayesian update of the probability vector implements a likelihood ratio test in the measurement space
- Conclusion: IMM can provide excellent performance in MECO determination

Copyright 2 200 by lames K . Beard. an unpublished work. All right reerved

Process Noise for Each Case

- Non-maneuvering: zero
- Hard turn left: zero
- Hard turn right: zero
- Random maneuvering: $\mathrm{A}^{2} / 6$
- Compares to single model: $\mathrm{A}^{2} .\left(\mathrm{P}_{2}+\mathrm{P}_{3} / 6\right)$
- Result: IMM provides improved performance

Copyright 2000 by lames K . Beard. an unpublished work. All rights seeserved.

References

- Introduction to matrix analysis, second edition, Richard Belman, SIAM press (1997) (reprint from McGraw-hill, 1970).
- Design and analysis of modern tracking systems, Samuel Blackman and Robert Popoli, Artech house (1999).
- Multitarget-Multisensor tracking: principles and techniques, Yaakov bar-shalom and Xiao-Rong Li, ISBN 0-9648312-0-1 (1995).
- Estimation and tracking: principles, techniques and software, Yaakov bar-shalom and Xiao-Rong Li, Artech house (1993).

