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Introduction 

• Interactive multiple models (IMM)
– Used in Kalman filter

» Extrapolation from last update time to current radar 
measurement time using target motion model

» Update using estimation theory
– Multiple models used in extrapolation

• IMMs improve accuracy of Kalman filter
• Theory of IMMs is based on

– Discrete Markov processes
– Additional estimation theory
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Today’s Topics

• Functions in an IMM
– Discrete Markov models
– Bayesian update of the probability vector
– Definition of a single state vector and 

covariance matrix from multiple models 
and the probability vector

• Equal time for the three topics
• Examples – aircraft, MECO
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Overview 

• Tracker update consists of
– Extrapolation of target position, velocity, and 

tracker errors from last update time to current 
radar measurement time

– Correlation or association – match track files to 
radar returns

– Update the track file with the radar data
• IMM allow

– Use of more than one target motion model
– Improved performance
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Discrete Markov Process

• A discrete Markov process is based on the 
concept of a probability vector

• A probability vector is a set of probabilities 
that a system is in each of a set of mutually 
exclusive states

• A probability vector pi can be propagated to 
another probability vector pi+1 by a linear 
transformation:

ii
pMp ⋅=

+1
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Examples of a Discrete 
Markov Process

• Terrain obscuration
– Terrain is modeled as random
– Specify the probability that a clear line of sight 

will become obscured in a given time
– Specify the probability that an obscured line of 

sight will become clear in a given time
• MECO
• Aircraft motion

– Random maneuvering
– Hard turn
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Variation of a Probability 
Vector With Time

• Define the probability that the system 
will change from state “j” to state “i” in 
time       as

• The probability that the system will 
remain in state “j” in time      is

tΔ ijaΔ

∑
≠

Δ−=Δ
ij

ijjj aa 1

tΔ
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The Linear Transformation

• Define a matrix M

• The probability vector obeys the linear 
transformation

( ) ][ ijatM Δ=Δ

( ) ( )tpMttp ⋅=Δ+
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Properties of
The Markov Matrix

• Columns are probability vectors
• No characteristic value can exceed 1.0
• When all elements of M are positive

– One and only one characteristic value of M 
exists that is equal to +1.0

– The corresponding characteristic vector is a 
positive probability vector
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The Summation Operator

• A vector of all ones is a summation operator

• Dot or inner product of summation operator 
with probability vector is one
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Markov Matrices

• Left-multiply by transpose of 
summation operator

• Converse: if all elements of M are 
nonnegative and this equation holds, M 
is a Markov matrix

• It follows that the product of two 
Markov matrices is a Markov matrix

TT M 11 =⋅
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Examples of Markov Matrices

• The terrain obscuration example

• The two-state toggle
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Characteristic Values

• For terrain obscuration example

• For two-state toggle example

( ) ( )ClearObscPObscClearP −−= 1,1λ

1,1 −+=λ
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Characteristic Vectors

• Terrain obscuration example

– Second characteristic value <1 when M is positive
– Second characteristic vector not a probability vector

• Two-state toggle example
– Stationary points, not limiting vectors except in an averaging 

sense
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Limiting Values

• Terrain obscuration example

• Two-state toggle example
– No limiting value independent of initial 

conditions
– “Mean” limiting value does exist
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Continuous Stochastic Process

• Define the matrix A as

• When p0 is a probability vector a 
continuous probability vector is given 
by

( )
t
tMA

t Δ
Δ

=
→Δ 0
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00, ptppAp =⋅=�
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Solution for
Time Invariant Case

• Probability vector versus time

• Definition of matrix exponential
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Bayesian Update of the 
Probability Vector

• Kalman filter with IMM
– State vector and error covariance extrapolates 

from last update time to current time
– Probability vector for target in each of K states 

extrapolated from last update time to current time 
using a Markov matrix

• Remaining operations to complete the update
– Update the probability vector
– Recombine the state vectors
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Use Association Information to 
Update the Probability Vector

• Method – weight each probability with its 
association likelihood and renormalize

• Begin with the extrapolated probability 
vector

• Use the likelihood laj from each of the 
associations
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Methodology for Update of 
Probability Vector

• Updated probability vector using 
Bayes’ theorem

• The updated probability vector is

( ) ( )
( )

( )tp
tp

tpplatp
U

U

TjjU
⋅

⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

1
1,~

#

#

( ) ( ) ( ) ( )
( ) ( )

( )
( )∑∑ ⋅

⋅
=

⋅

⋅
==

k
kk

kk

k
k

k
k tpla

tpla
tpkyP

tpkyP
ykPtp ~

~
~

~

Copyright 2000 by James K. Beard, an unpublished work.  All rights reserved. Slide 21

Unifying the State Vector

• We have K state vectors, covariance 
matrices, and probabilities

• The system is in only one of K states
• Unification:  use the Bayesian mean
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Unifying the Covariance Matrix

• Covariance matrix follows from 
Bayesian mean for state vector
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MECO

• MECO is main engine cutoff
• This is an obvious candidate – three 

target motion models
– No MECO
– MECO
– Existing model encompassing both cases
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MECO System Models

• MECO has not occurred
– Process noise is low
– System model has acceleration along velocity vector

• MECO has occurred about time of last update
– Process noise is very low
– Gravity acceleration only

• MECO occurred sometime since last update
– This is the current model, unmodified
– Process noise high
– Intermediate acceleration along velocity vector
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IMM Benefits for the MECO 
Problem

• Lower process noise
– Every update but one uses either MECO or non-

MECO model with lower process noise
• Enhanced performance

– Lower process noise allows better association 
performance

– Lower process noise provides lower tracker errors
– Better tracker accuracy provides better association 

gate accuracy
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Determining MECO

Line of Sight Acceleration
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MECO Determination

• Likelihood ratio uses
– All the measurements
– All the states
– The covariance matrix

• Simplest – and best performance
– Implement in the measurement space
– Minimize computation
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MECO Determination Using 
the Probability Vector

• The probability vector is an indicator of when 
MECO occurs

• The probability vector combines propagation 
using best estimate of likelihood of MECO as 
a function of time – the A matrix

• The Bayesian update of the probability vector 
implements a likelihood ratio test in the 
measurement space

• Conclusion:  IMM can provide excellent 
performance in MECO determination
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Aircraft Motion

• Example – Singer’s aircraft motion 
model
– No maneuver, probability P1

– Hard turn left, acceleration A, probability 
P2/2

– Hard turn right, acceleration A, probability 
P2/2

– Random lateral acceleration, probability P3
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Process Noise for Each Case

• Non-maneuvering:  zero
• Hard turn left:  zero
• Hard turn right:  zero
• Random maneuvering:  A2/6
• Compares to single model:  

A2.(P2+P3/6)
• Result:  IMM provides improved 

performance
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Summary

• Keys to success with IMM
– Selection of system models for distinct, observable 

differences at association time
– The Markov matrix

• Use a priori information
– Target type
– CONOPS and mission timeline

• Keep number of models under 4
– Avoid information overload
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