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Introduction

* Interactive multiple models (IMM)
- Used in Kalman filter

» Extrapolation from last update time to current radar
measurement time using target motion model

» Update using estimation theory
- Multiple models used in extrapolation
* IMMs improve accuracy of Kalman filter
* Theory of IMMs is based on
- Discrete Markov processes
- Additional estimation theory
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Today’s Topics

Overview

* Functions in an IMM
- Discrete Markov models
- Bayesian update of the probability vector

- Definition of a single state vector and
covariance matrix from multiple models
and the probability vector

* Equal time for the three topics
* Examples - aircraft, MECO
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* Tracker update consists of

- Extrapolation of target position, velocity, and
tracker errors from last update time to current
radar measurement time

- Correlation or association - match track files to
radar returns

- Update the track file with the radar data

* IMM allow
- Use of more than one target motion model
- Improved performance
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Discrete Markov Process

Examples of a Discrete
Markov Process

* A discrete Markov process is based on the
concept of a probability vector

* A probability vector is a set of probabilities
that a system is in each of a set of mutually
exclusive states

* A probability vector p; can be propagated to
another probability vector p;,; by a linear
transformation:

b= M P
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Interative Multiple Models

¢ Terrain obscuration
- Terrain is modeled as random

- Specify the probability that a clear line of sight
will become obscured in a given time

- Specify the probability that an obscured line of
sight will become clear in a given time

* MECO

¢ Aircraft motion
- Random maneuvering
- Hard turn
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Variation of a Probability
Vector With Time

The Linear Transformation

* Define the probability that the system
will change from state “j” to state “i” in
time At as Ag;

* The probability that the system will

iy

remain in state “j” in time At is

/
/ Aa; =1-)" Aa;

j#i
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¢ Define a matrix M
M (At)=[Aa;]

* The probability vector obeys the linear
transformation

p(t+At)=M - p(t)
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Properties of
The Markov Matrix

The Summation Operator

* Columns are probability vectors
* No characteristic value can exceed 1.0
* When all elements of M are positive

- One and only one characteristic value of M
exists that is equal to +1.0

- The corresponding characteristic vector is a
positive probability vector
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* A vector of all ones is a summation operator
1
1
1=|.

1

* Dot or inner product of summation operator
with probability vector is one

l-T'E:l
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Markov Matrices

Examples of Markov Matrices

¢ Left-multiply by transpose of
summation operator

1T . M — lT
* Converse: if all elements of M are
nonnegative and this equation holds, M

is a Markov matrix

¢ It follows that the product of two
Markov matrices is a Markov matrix
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Interative Multiple Models

* The terrain obscuration example

M = 1-P(Obsc[Clear)  P(Clear|Obsc)
~| P(Obsc/Clear) 1-P(Clear|Obsc)

* The two-state toggle

vefi o
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Characteristic Values

Characteristic Vectors

* For terrain obscuration example

2 =1, 1- P(Clear|Obsc)- P(Obsc|Clear )

* For two-state toggle example

A=+1 -1
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¢ Terrain obscuration example

P(Clear|Obsc)]
—c- 1 =0
- P(Obsc[Clear)| = -

- Second characteristic value <1 when M is positive
- Second characteristic vector not a probability vector
* Two-state toggle example

- Stationary points, not limiting vectors except in an averaging

sense 5 1
p,= {5} p,= LJ (not a probability vector)
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Limiting Values

Continuous Stochastic Process

e Terrain obscuration example

1 {P(ClearObsc)j|

b= P(Obsc\CIear)+ P(CIear\Obsc)' P(Obsc\CIear)

* Two-state toggle example

- No limiting value independent of initial
conditions

- “Mean” limiting value does exist

‘Copyright 2000 by James K. Beard, an unpublished work. Al ights resrved. Slide 15

* Define the matrix A as
. M(At
A=lim My
At—0 At

* When p, is a probability vector a

continuous probability vector is given

by

p=Ap, plt)=p,
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Solution for
Time Invariant Case

Bayesian Update of the
Probability Vector

* Probability vector versus time

p(t)=exp(A-(t-t,))- p(t,)

* Definition of matrix exponential

M (dt)=exp(A-dt)=1 +§:%-[A'dt]i
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Interative Multiple Models

¢ Kalman filter with IMM

- State vector and error covariance extrapolates
from last update time to current time

- Probability vector for target in each of K states
extrapolated from last update time to current time
using a Markov matrix

* Remaining operations to complete the update

- Update the probability vector

- Recombine the state vectors
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Use Association Information to
Update the Probability Vector

Methodology for Update of
Probability Vector

* Method - weight each probability with its
association likelihood and renormalize

* Begin with the extrapolated probability
vector _
B(t)=exp(A-(t-t))- p(t.)

¢ Use the likelihood laj from each of the

associations 1+ . )
= %~exp(—?gj-Ej -gj} j=1...K
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» Updated probability vector using
Bayes’ theorem

Pk 0
Z P(X‘k) ﬁk(t) ;Iak . ﬁk(t)
* The updated probability vector is

EU (t)_|:|aj 5]} B(t): 1. F:E (t)
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p.(t)=PlKly)

Unifying the State Vector

Unifying the Covariance Matrix

e We have K state vectors, covariance
matrices, and probabilities

* The system is in only one of K states
* Unification: use the Bayesian mean

Z((t): Zk: P(k‘X)'):(k = Zk: pk(t)'gk
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* Covariance matrix follows from
Bayesian mean for state vector

P(t)=((&-x)-(&-x)")
= Zk: pk(t)' R +Zk: pk(t)'():(k _X)(Xk _):()T
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MECO

MECO System Models

* MECO is main engine cutoff
* This is an obvious candidate - three
target motion models
- No MECO
- MECO
- Existing model encompassing both cases
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Interative Multiple Models

* MECO has not occurred
- Process noise is low
- System model has acceleration along velocity vector
MECO has occurred about time of last update
- Process noise is very low
- Gravity acceleration only
* MECO occurred sometime since last update
- This is the current model, unmodified
- Process noise high
- Intermediate acceleration along velocity vector
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IMM Benefits for the MECO
Problem

Determining MECO

* Lower process noise
- Every update but one uses either MECO or non-
MECO model with lower process noise
* Enhanced performance
- Lower process noise allows better association
performance
- Lower process noise provides lower tracker errors
- Better tracker accuracy provides better association
gate accuracy
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Thresholding
\ ; with Algorithm A

Thresholding

/\/ with Algorithm B

Thresholding

\
\ ‘f with Likelihood
' Ratio

Line of Sight Acceleration

Altitude Acceleration
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MECO Determination

MECO Determination Using
the Probability Vector

¢ Likelihood ratio uses
- All the measurements
- All the states
- The covariance matrix
* Simplest - and best performance
- Implement in the measurement space
- Minimize computation
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* The probability vector is an indicator of when
MECO occurs

* The probability vector combines propagation
using best estimate of likelihood of MECO as
a function of time - the A matrix

* The Bayesian update of the probability vector
implements a likelihood ratio test in the
measurement space

* Conclusion: IMM can provide excellent
performance in MECO determination
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Aircraft Motion

Process Noise for Each Case

* Example - Singer’s aircraft motion
model
- No maneuver, probability P;
- Hard turn left, acceleration A, probability

P,/2

- Hard turn right, acceleration A, probability
P,/2

- Random lateral acceleration, probability P;
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* Non-maneuvering: zero

* Hard turn left: zero

* Hard turn right: zero

* Random maneuvering: A?/6

* Compares to single model:
A2(P,+Py/6)

* Result: IMM provides improved
performance
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Summary

References

* Keys to success with IMM

- Selection of system models for distinct, observable
differences at association time

- The Markov matrix
* Use a priori information
- Target type
- CONOPS and mission timeline
* Keep number of models under 4
- Avoid information overload
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