
CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

1


Abstract—Two innovations in search methodology for Costas

arrays are presented here: extensive exploitation of symmetries,
and look-ahead row index exclusion tables. Together, they
achieve a reduction of more than a factor of four in
computational requirements over conventional search methods.
We examined the benefits of these innovations on Costas arrays
of higher orders, and particularly on a search over order 28.

Index Terms—Permutation matrices, tree searching, Costas
arrays

I. INTRODUCTION

OSTAS arrays are permutation arrays that have the
additional condition – the Costas condition – that no two

ones in the matrix differ in position by the same number of
both rows and columns. When Costas arrays are used as
frequency assignment schemes in frequency-agile waveforms,
then, for any range or Doppler offset other than zero, the
receiver response exhibits energy from cross-correlation of no
more than one pair of pulses [1][2].

Finding Costas arrays is limited to either of two fortuitous
number-theoretic generators and their extensions [3][4][5] or
exhaustive search. The generators do not find all Costas arrays
of a given order above about order seven [6], and Costas
arrays have been found for orders as high as 27 that are not
found or predicted by any of the generators [9][10]. The only
known way to find all Costas arrays of orders greater than
about seven is exhaustive search.

Since there are N factorial permutation matrices of order N
and there is no known way of restricting the space in which
Costas arrays may exist, the search itself may be of factorial
complexity. The technique of backtrack programming [6][7]
reduces the search complexity. We observe a factor of about
five in complexity for each increase in order using backtrack
programming.

Over time, the authors have developed an exhaustive search
methodology that has provided the first exhaustive search over
orders 24, 25, and 26 [8], and was the first to find an
announced new Costas array of order 27 [9][10]. We present
here two major innovations in this methodology not

Manuscript received January 6, 2001.
J. C. Russo is with Lockheed Martin Advanced Technology Laboratories,

Cherry Hill, NJ 08002 USA (e-mail: jon.c.russo@lmco.com).
K. G. Erickson is an independent consultant, Cherry Hill, NJ 08002 USA

(e-mail: keith.george.erickson@gmail.com).
J. K. Beard is an independent consultant, Medford, NJ 08055 (609-654-

6559, fax 609-654-8751, e-mail: jkbeard1@verizon.net).

previously reported that provide a search with less than one-
fourth the resources required by conventional search methods.

II. THE BASE SEARCH METHODOLOGY

A. Row Index Notation, the Difference Table, and the
Costas Condition

Here we express permutation matrices by row index
notation, in which a sequence of N integers represents the row
indices of the ones in successive columns. From such a
representation, we construct a difference matrix: row i and
column j is the difference between the row indices for
columns j and j+i. An entry in the difference matrix is, given
a shift of i columns, the number of rows to shift to overlap the
dots for that column. Thus if there are no duplicated
differences on any given row, then no two ones differ in
position by the same number of rows and columns, thus the
Costas condition is met.

B. An Example of the Difference Table

We build the difference table by beginning with the Costas
array in row index form. For the second row, we subtract the
row indices for each column from the row index of the
preceding column. We label this row D1 for differences in
row indices for columns that are adjacent. For the next row of
the difference table, which we label D2, we enter the
differences between the row indices for columns with indices
that differ by two. The row of the difference matrix for k
columns apart has n-k entries, so we are done with n-1 rows.
The difference table for the Costas array {4,2,5,1,3} is shown
below as Table 1.
Table 1. Difference Table for {4,2,5,1,3}

By using the difference table, verification that a given
permutation matrix satisfies the Costas condition can be
accomplished in polynomial time. Use of the difference
matrix to preclude row indices in the process of the search is
backtrack programming with preclusion [7], which underlies
all known practical search mythologies to date [11]. We begin
here the most basic form of this process as a elementary

Col 1 2 3 4 5

CA 4 2 5 1 3

D1 ‐2 3 ‐4 2

D2 1 ‐1 ‐2

D3 ‐3 1

D4 ‐1

Costas Array Search Technique that Maximizes
Backtrack and Symmetry Exploitation

Jon C. Russo, Keith G. Erickson, Member, IEEE, and James K. Beard, Life Senior Member, IEEE

C

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

2

foundation for our method.

C. Logic and Data Flow of the Elementary Search Method

Here we describe one method of applying backtrack
programming with preclusion to be used as the core engine for
a Costas array search methodology. We begin by tying the
difference matrix to the Costas condition.

We build a Costas array one row index at a time by using
the difference matrix to determine which row indices are
precluded for the next column, either because that row index is
already taken or because its use would cause a duplication in a
row of the difference matrix as available to that point. Only
row indices that are not precluded are accepted by the search
algorithm, which then uses the accepted row index to update
the difference matrix. Thus, the method builds the difference
matrix simultaneously with the set of row indices by using the
preclusion matrix computed from the difference matrix to
ensure that each succeeding choice of column index meets the
Costas condition.

We implement the preclusion matrix as follows. We begin
by precluding values already used as row indices. Entries in
row D1 in Table 1 represent the differences between adjacent
columns. We add these entries to the row index for the
column preceding the yet-undetermined row index for the next
column and the sums become forbidden row indices for the
next column. We add entries in row D2 in Table 1 to the row
index for the column two preceding the yet-undetermined
column to obtain more precluded row indices, etc. The result
is the difference-preclusion table.

1) Illustration of the Method
Please refer to Table 1. We begin with the row index of the

first column of four from our example of {4,2,5,1,3}. The row
index of the second column can be any row index except four,
and following our example, we select two. The difference
matrix at this point consists of the title column of Table 1,
columns one and two of the CA row and column one of row
D1, or all except the last four columns of each difference row.

For any number of available row indices, we build up a list
of row indices precluded for the next column as the union of
two sets: (1) the row indices already used, and (2) precluding
0 as the next row index to avoid repeating the row index
difference of -2. We only allow row indices of 1 through 5 in
any case.

As Table 2 shows, we preclude row indices either because
they are already used by preceding columns, or because they
would result in a repeated entry in the difference table row D1,
the only row that is populated to this point. We use the
notation CA(j) for entry j in row CA, or the row index for
column j, and D1(k) for entry k in row D1. Note that one of
the precluded row indices, the lone entry in the difference
preclusion table, is outside the permissible range of columns,
so we note it in Table 2, but it does not affect the choice of
row index for the next column. In general, a difference in row
indices can be any integer from –(n-1) to +(n-1). We see from
Table 2 that the row indices one, three and five are available.
In keeping with our selected example of {4,2,5,1,3} we select
five.

The difference matrix at this point consists of the first three
columns of row CA, the first two columns of row D1, and the
first column of row D2, or, all of Table 1 except the last three
columns of each difference row. We use the available values
of the difference table and row indices to form a list of
precluded row indices for column four. In general, we begin
with the row indices used in columns one through three, and
these column indices are marked as used. Then we add the D1
row of the difference table to the row index of the column one
back and mark those sums as forbidden for the next column
index. We add the D2 row to the row index of the row index
two columns back, the row three indices to the row index from
three columns back, continuing until we have no more
available difference table rows. Table 3 below shows the
result for the row indices for the first three columns.

At this point, the difference matrix consists of Table 1
except the last two columns of each difference row. The last
row index is the only row not yet taken, if that row index
meets the Costas condition. The Costas condition is linked to
the difference matrix, so we repeat the process of adding the
available entries of the row labeled Dx to the Costas array row
index for x columns back from the next column. The result in
this case is shown as Table 4. Note that row index three is
available in Table 4 so we have a Costas array.

D. Summary of Backtrack Programming with Preclusion
in Search

We have defined a method of backtrack programming with
preclusion for a Costas array search methodology. We
perform the search in recursion levels, the current level
number being the number of columns for which row indices
have been defined to a given point in the search.

We initialize the search at level one by defining the row
index for the first column; these row indices are stepped from
one to N (or, zero to N-1). When a new row index is not
precluded, it is accepted and the search moves to the next
level. Then the search over the available row indices is
completed, the search moves back to the previous level. When
we reach level N and a row index is not precluded, we have a
Costas array and we declare it and drop back to level N-1.
The entire search terminates when the row index search for
level one is completed. Thus, the search methodology flow is
a continuing change of recursion level.

E. Use of Bitmasks for Rows of the Difference Table and
Preclusion Mask

The difference table consists of numbers that may be
anywhere from –(N-1) to (N-1). Since the Costas condition is
that no entry is ever allowed to repeat, then bit positions in a
64-bit register can be used to represent a row of a difference
matrix for searches up to order 33.

The preclusion table is shown for all values that may be
defined in the algorithm in the examples. However, only row
indices from zero to N-1 are significant in the implementation,
so a 32-bit mask is sufficient. This bitmask is initialized with
the rows already used up to that point in the search, and the
difference table is shifted by the amount of row indices and a

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

3

logical OR updates the necessary portion of the preclusion
mask.

Table 2. Precluded row indices for the third column from two
row indices

Table 3. Precluded row indices for the fourth column from three
row indices

Table 4. Precluded row indices for the fifth column from four
row indices

F. Allocation of Tasks to Resources

A “case” or task block is defined as a search beginning with
a particular set of several row indices – three, four or five,
depending on order and the desired task size. We perform
task allocation by assigning blocks of cases to a particular
computer core. An executive front end runs the search engine,
reads the allocation files and writes logs of cases completed.

These logs are compiled by an automated bookkeeping
program that begins with the output of a comprehensive
extended Costas array generator [8][9][12] so that new Costas
arrays are apparent when the count changes. The output of
every run is a complete set of database files as provided by the
authors at CISS 2006 and 2008, and is available on request
[9][12].

G. Sets of Four and Eight Costas Arrays Related by
Transposition and Rotation

Given any Costas array, seven other permutation matrices
can be defined that meet the Costas condition by a
combination of transpositions and rotations, or, equivalently,
by reversing the order of rows and columns and exchanging
rows for columns; the former is more convenient for
visualization but the latter is more convenient for
implementation by computer. If the Costas array or any
rotated version of it is symmetrical there will be duplications
and only three different Costas arrays will be found by
rotation. Thus asymmetrical Costas arrays come in sets of
eight and symmetrical Costas arrays come in sets of four. We
refer to distinct Costas arrays as not being related to each other
by any combination of rotations and translation. We refer to
the sets of four or eight as polymorphs of any one of the
Costas arrays is not distinct from any other.

Our example {4,2,5,1,3} is symmetrical so its set of
polymorphs has four members. These are shown in Table 5
below.

Table 5. Polymorphs of {4,2,5,1,3}

For our purposes of examining symmetries, we will use the
full generality provided by an asymmetrical Costas array
{4,2,3,5,1}, whose polymorphs, ordered by increasing row
index, are shown in Table 6 below. This Costas array can be
found by using the methods of the above paragraph,
“Illustration of the method” or verified by looking at its
difference table.

Table 6. Polymorphs of {4,2,3,5,1}

Row Index Reason

0 D1(1)+CA(2)

1

2 Taken

3

4 Taken

5

Row Index Reason

2 Taken

3 D1(1)+CA(3), D2(1)+CA(2)

4 Taken

5 Taken

6

7

8 D1(2)+CA(3)

Row Index Reason

‐3 D1(3)+CA(4)

‐2

‐1 D1(1)+CA(4), D3(1)+CA(2)

0

1 Taken

2 Taken

3

4 Taken, D1(2)+CA(4), D2(2)+CA(3)

5 Taken

6 D2(1)+CA(3)

2 4 1 5 3

3 1 5 2 4

3 5 1 4 2

4 2 5 1 3

1 4 3 5 2

1 5 3 2 4

2 4 3 1 5

2 5 3 4 1

4 1 3 2 5

4 2 3 5 1

5 1 3 4 2

5 2 3 1 4

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

4

III. INNOVATIONS IN THE SEARCH METHODOLOGY

A. Symmetries Used for Efficiency in Costas Array Search
Methodology

1) Noting Space Searched Provides a Factor of Two
In Table 5 and Table 6, adding the row indices from the first

and last Costas array always results in six or N+1. Thus when
stepping through the cases, a row index of k will always have
a polymorph with row index N-k+1, so stepping k from 0 to
[(N-1)/2]-1, rounded down for even N, will find all the Costas
arrays for a particular n if the polymorphs are added to the list.
Thus, we reduce the required search space by a factor of about
two. And, when the order N is odd and the column number is
(N-1)/2, only row indices for column two up to (N-1)/2-1 need
be searched for the same reason.

The fact that each Costas array found has four or eight
polymorphs opens the possibility that other symmetries, or
proper posing of the symmetries with an appropriately
structured search methodology, may reduce the required
search space by a factor of four, or an additional factor of two.
Search methodologies specialized for symmetrical Costas
arrays are far more efficient than more general search
methodologies and have been used to show that no
symmetrical Costas arrays for orders 32 or 33 exist [13].
Thus, with this as an example of possible gains, we look at
Table 6 for further symmetries.

One example, the “center dot” invariance is apparent from
Table 6. If a Costas array has a one at location ((N-1)/2,(N-
1)/2), all Costas arrays obtained by transposition and rotation
will also have a center dot.

One economy of search is at the beginning of the search
space. Costas arrays beginning with a row index of one in the
first column can be found from Costas arrays of one order
smaller by “adding a dot” so this part of the search space can
be omitted.

2) Innovations in Symmetry Exploitation
In addition to eliminating the second half of the first row,

the search employs a technique referred to as "progressive
exclusion" [14][8] in order to leverage the eight-fold
symmetry of the square. We call it progressive exclusion,
because as the first column index increases toward the middle,
a larger number of possible dots on the edges of the square are
marked as not being needed to include in the search. This is
possible because exhaustively searching the previous top row
dots guarantees that symmetrically corresponding edge dots
have been covered. In other words, if the top row has fully
explored the first d dots, then the nearest d-1 dots to any
corner, in addition to each corner, have been covered through
symmetry. It is important to note that the current position
being explored is not included in this count since it hasn't been
exhausted.

As an example, consider an exhaustive search of Costas
arrays of order seven. In the following discussion, dot
locations are denoted by their row and column coordinates.
When the search first starts out and we are exploring
possibilities for the very first dot in the upper-left corner, we
may not eliminate any dots due to progressive exclusion

(although we may eliminate some due to the normal Costas
constraints like row/column orthogonality). That is, the dot in
position (7,7), must be considered as a possibility. Once
position (1,1) has been fully exhausted, we may eliminate all
corner dots from further search efforts, because any Costas
array with a dot in any corner would have already been
uncovered by exhausting the (1,1) case. This concept is
advanced for each column index for which the search is
exhausted. Once dots in positions (1,1) and (1,2) have been
fully searched, subsequent efforts may omit both the corner
dot, and dots one step from any corner. The number of dots
excluded progresses as the starting row position approaches
the middle, as shown in Figure 1 below:

Figure 1. Innovative Symmetry logic

In Figure 1, a black square indicates the current dot position
under evaluation in the search. A gray square indicates dot
positions that are eliminated from consideration in the search
due to progressive exclusion. As a side note, the first step in
Figure 1, evaluating dot position (1,1), is not necessary
because all arrays of a given order with a dot in position (1,1)
may be found by attempting corner dot extensions to the
previous order.

We cannot apply the logic directly to the second row and
column while searching with the corner dot. The search is
directed by the dot on the first row, so that dot is guaranteed to
be covered in all symmetry transformations. However, the
concept could be extended as follows: If your searched had
completed all possibilities with fixed starting dots (1,1) and
(2,3), you could eliminate position (3,2) in all subsequent
searches under (1,1).

Also, for example, if you searched completely all
possibilities under (1,2) and (2,3), then you should be able to
eliminate all symmetric representations of that pair of dots
from future searches, but the overhead for this would
outweigh gains obtained through the reduction in search space.

Note that the last dot in Figure 1 need not be searched
because there is no place for the last column index; this is the
rational for the maximum row index for column 1.

B. More than One Level with the Preclusion Table

An innovation for search methodologies first presented here
is the use of preclusion tables for more than one column. We
use a count of recursion levels entered as an architecture-
independent measure of resource requirements for a search
methodology. Figure 2 shows plots orders of recursion
entered, with no look-ahead and with full look-ahead, for
order 28 with symmetry exploitation, for a search over row
indices in a block that begins with row indices
{6,26,23,13,15…}.

Note that, with look-ahead, (the dotted line), the vast
majority of backtrack programming with preclusion executes
at recursion levels 14 through 19, and the only recursion levels

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

5

above 23 were those that led to the lone Costas array. This
supports a conjecture that for column number (equivalent to
recursion depth) of 18 and above, that preclusion tables one or
two recursion levels higher than the current recursion search
will show no available row indices and thus allow
backtracking more often. This is indeed the case.

Figure 2. Orders of recursion tabulated over a limited range of
search with and without look-ahead

IV. METHODS OF GENERATION

A. Concatenation and deletion

1) Taylor and Golomb extensions
Taylor and Golomb have extended the number-theoretic

Welch and Lempel-Golomb generators by deleting corner dots
and by augmenting existing Costas arrays with “Costas
arrays” of order one and two [3][4][5]. Other possibilities
exist, such as the example of augmenting two order three
Costas arrays to form an order six Costas array.

Figure 3. Augmenting two order three Costas arrays

Unfortunately, this interesting example is a rare occurrence
that is not seen at higher orders. This example is very
interesting because it has two zero quadrants, and the two
center antidiagonals are both all zeros.

However interesting this example may be, an examination
of the difference matrix reveals that the likelihood of examples
for larger orders is vanishingly small. The first half of each
row is identical to those of each Costas array, but the number
of entries in the difference matrix from dots from both Costas
arrays exceeds the number of dots from within each one by
about a factor of two, and the likelihood that there will be no
duplications becomes vanishingly small for relatively low
orders. This is less true when Costas arrays of small orders

are used to augment larger Costas arrays, as Taylor’s success
by adding one and two dots attests.

2) By the Authors
The generators and extensions used by the authors for many

years [6][12] uses a form of augmentation that we call
spinning in which a Costas array of order N-1 is rotated end-
around and single dot is inserted at all possible points in each
rotated matrix, and the resulting permutation matrix checked
for the Costas condition. Although a number of Costas arrays
are found by this method, the number of Costas arrays
decreases with order, and none have been found by this
method for order greater than 100.

The authors generalized the Lempel-Golomb generator by
offsetting the exponents in the powers to which the Galois
field elements were taken. Zero is not allowed as the power to
which a Galois field element is taken because that means that
the other power of a Galois field element must be zero, which
is not possible [8]. By adding a dot at the row and column in
the resulting permutation matrix where both exponents would
be zero, a permutation matrix results in which all dots other
than the inserted dot are guaranteed to meet the Costas
condition. Occasionally this results in a Costas array not
found by any other method.

B. Interleaving

Two permutation matrices of order differing by at most one
can be interleaved in a checkerboard to form another
permutation matrix. Entries in even numbered rows of the
difference matrix are double the entries in the difference
matrices of each of the two Costas arrays; this amounts to the
condition that the difference matrices of the two Costas arrays
not have duplications between them. The odd numbered rows
of the difference matrix for the augmented matrix, however,
represents counts of the row shifts between the two interleaved
Costas arrays, and amounts to a new Costas condition of
complexity about twice that of each separately; thus the
likelihood of checkerboard augmented Costas arrays for large
orders is vanishingly small.

V. RESULTS

A. Effect of Innovations on Costas Array Space

The occurrence of al known Costas arrays from order three
through 400, plotted as occurrence as a function of the first
row index a[0], is shown as Figure 4. The occurrence is
relatively flat across values of a[0] because Welch arrays
dominate the numbers for large orders, and the singly-periodic
quality of these arrays means that whenever one exists for a
given value of a[0] then another exists for every other value of
a[0].

When the symmetry conditions of II.A.2 are applied, the
surviving Costas arrays are shown in Figure 5. Note that
limiting the search to a[j] less than [(N-1)/2] provides a factor
of two, but that the techniques presented in III.A.2)III.A.2
dramatically reduce the numbers of Costas arrays even in that
space.

The searchable space of interest in 2010 is orders through
28. The occurrence of all Costas arrays through order 28 is

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0 5 10 15 20 25 30

0L

FL

 •

 •

 •

 •

 •

 •

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

6

shown as Figure 6. The effect of the symmetry condition on
this distribution is shown as Figure 7.

Figure 4. Occurrence of all Costas arrays from orders three
through 400 as a function of a[0]

Figure 5. Costas arrays through order 400 that satisfy symmetry
exclusion conditions

B. Discovery of Last Costas Array of Order 27

One of us (Erickson), using the idle resources of a 38-core
processing farm dedicated to compiler development proved
pivotal in discovering the final Costas array of order 27. We
developed a distribution method that allowed spawning remote
jobs on the farm to process cases at an idle priority. We then
collected these results into our pre-existing log format for
cataloging. To comply with the usage requirements of the
farm, we reduced each job to a single case at level five. Each
job at this granularity ran for about two minutes, and the farm
processed 1,965,582 cases. One of these cases was the newly
discovered Costas array shown below with its polymorphs as
Table 7. This Costas array was found about the same time as
part of another effort using a supercomputer [9][10].

C. Metric for Representing efficiency of Methodologies

An implementation-independent measure of the
computational resources used in a search is the number of
times that a recursion level is increased. Figure 2 above
shows a profile of recursion levels entered for a particular
limited search. Total recursion-level-entered counts are a
measure of total resources used in a run.

D. Quantification of Gains from the Innovative Methods

Total recursions-entered counts for complete searches over
orders 14 through 20 for no extra preclusion tables and for all

available are shown below as Figure 8, both with full
symmetry exploitations; a plot with all available look-ahead
tables and only conventional symmetry exploitation is
included to illustrate that effect. Close analysis of the raw
data shows that the extra tables provide just over 50 percent
improvement over simply limiting the first row index to [N/2].
The increase in required resources as order increases is about a
factor of 4.86.

Figure 6. Costas arrays from order three through 28

Figure 7. Costas arrays through order 28 that satisfy symmetry
exclusion conditions

Because Figure 8 covers several orders of magnitude, the
ratios gained by symmetry exploitation and look-ahead
preclusion tables are not shown with good accuracy. Figure 9
below shows the ratios of recursions entered with and without
each technique. Separate curves are shown for odd and even
orders because slightly different properties of the search.

A simple least-squares fit of the form /A B N to the
curves of Figure 9 gives asymptotes of factors of 0.98 for
omitting the corner dot, 0.53 for full symmetry exploitation
and 0.32 for look-ahead. These curves, extrapolated to orders
27 and 28, predict factors of 0.872 for omitting the corner dot,
0.60 for full symmetry exploitation and 0.43 for look-ahead.
These figures are borne out by searches over small ranges of
order 28.

The effect of symmetry exploitation is illustrated by a plot
of the number of iterations entered, with and without
symmetry exploitation; such is shown below as Figure 10.

Note that the number of cases for the searches for the corner
dot and the next-to-corner dot is large compared to other row
indices for the first column.

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

7

Figure 8. Number of Iterations Entered vs. Order: Effect of
Symmetry Exploitation and Multiple Preclusion Tables versus
Order of Search

E. Innovations in Symmetry Exploitation

Figure 9. Ratios of Recursions-Entered Gains for Look-Ahead
and Symmetry Exploitation for Orders 14 through 20

Figure 10. Number of Iterations Entered versus First Column
Index for Order 21, With and Without Symmetry Exploitation

The total advantage for a search over order 28, the current
lowest un-searched order, is

 0.60 0.43 0.872 0.225  
which does not include the factor of two obtained by stepping
the first row index from 0 to [(N-1)/2]-1.

VI. CONCLUSIONS AND CONJECTURES

A. Conclusions

We have demonstrated a search methodology with two new
innovations: full symmetry exploitation and extended look-
ahead for the null set in available row indices. We further
point out that the Taylor extension method of adding a corner
dot makes search for a[0] at zero unnecessary. The combined
effect of these is better than a factor of four better than
conventional methods that simply limit the search for values
of the first row index that stop short of the center point.

B. Conjectures and Predictions

An engaging convention that began with Solomon W.
Golomb’s landmark 1984 paper with Herbert Taylor is
presentation of unproven results or simply challenges to the
community as conjectures to be proven or disproven. Here we
present a few selected conjectures as areas for further work
and predictions of future results.

 No Costas arrays above order six exist that have
two empty quadrants.

 Orders 32 and 33 will be searched within the next
15 years. None will be found.

 No Costas arrays that are not disclosed in the
current literature [6][9][10][12] exist, other than
those that may be produced by the existing
generators and their extensions as reported on in
existing literature [6][13].

 The number of Costas arrays for a given order
N>23 does not exceed N2.

 The number of consecutive orders K for which no
Costas arrays exist has no upper bound. However,
for any K an order N exists for which Costas arrays
do exist and |K/N-1| has no lower bound.

 Costas arrays will be used in communications
waveforms as part of a shared bandwidth strategy
for essentially all digital communications systems.
Similarly, Costas arrays will be used in essentially
all digital radar waveforms designs as part of a
strategy for mitigation of band sharing, mutual
interference, interference with other systems, and
similar purposes.

 Costas arrays will be used as part or all of designs
of digital fingerprinting systems involving imagery
and other multidimensional data.

VII. ACKNOWLEDGMENT

Keith G Erickson is responsible for finding the Costas array
of order 27 first reported in an email by James K Beard on
May 29, 2008 [9][10].

0.E+00

1.E+11

2.E+11

3.E+11

4.E+11

5.E+11

0 1 2 3 4 5 6 7 8 9

NoSymm

Symm

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

14 15 16 17 18 19 20 21

C/NC

FL/0L

s/ns

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

14 15 16 17 18 19 20 21

sym, 0L

no sym, FL

sym, FL

NoCorner

CISS-2010 Russo, Ericson, & Beard, Costas Search; Paper No. 86

8

REFERENCES
[1] John P. Costas, Project Medior – A medium-oriented approach to sonar

signal processing, HMED Technical Publication R66EMH12, GE
Syracuse NY (now Lockheed Martin Marine Systems and Sensors,
Syracuse), January 1966.

[2] John P. Costas, “A study of a Class of Detection Waveforms Having
Nearly Ideal Range-Doppler Ambiguity Properties,” Proceedings of
the IEEE, Vol. 72, No. 8, August 1984.

[3] S. W. Golomb and H. Taylor, “Constructions and Properties of Costas
Arrays,” Proceedings of the IEEE 72(9) pp 1143-2263, September
1984.

[4] Solomon Golomb and Herbert Taylor, “The T-4 and G-4 Constructions
for Costas Arrays,” IEEE Transactions on Information Theory, vol. IT-
38, no. 4, July 1992, pp. 1404-1406.

[5] Oscar Moreno, “Survey on Costas Arrays and their Generalizations,” in
Mathematical Properties of Sequences and Other Combinatorial
Structures, Jong-Seon No, Hong-Yeop Song, Tor Helleseth, and P.
Vijay Kumar, Eds., Springer (Kluwer), 2003, ISBN 1-4020-7403-4.

[6] James K Beard, “Generating Costas Arrays to Order 200,” Conference
on Information Sciences and Systems (CISS) 2006 (IEEE IT Society
and Princeton University).

[7] Solomon Golomb and Leonard Baumert, “Backtrack Programming,”
JACM, October 1965, pp. 516-524.

[8] Beard, James K., Russo, Jon C., Keith G. Erickson., Michael
Monteleone, and Michael Wright, “Costas Array Generation and
Search Methodology,” IEEE Transactions on Aerospace and
Electronic Systems, 43, 2 (April 2007), 522-538.

[9] Konstantinos Drakakis, Scott Rickard, James K Beard, Rodrigo
Caballero, Francesco Iorio, Gareth O'Brien and John Walsh, Results of
the enumeration of Costas arrays of order 27, IEEE Transactions on
Information Theory 54 10 (October 2008) pp 4684-4687.

[10] James K Beard, announcement of new Costas array of order 27 on
personal web site,
http://jameskbeard.com/jameskbeard/Costas_Arrays.html#NewCA27.

[11] MacTech, Programmer’s Challenge, available on web page
http://www.mactech.com/progchallenge/, click on “Costas Arrays
(December 1999).”

[12] James K Beard, “Costas array generator polynomials in finite fields,”
CISS 2008, March 21 2008, Princeton University, Session TP 03, Paper
5; Database of Costas arrays from orders 2 to 200 on a CD-ROM given
out at CISS 2006 was extended to order 400.

[13] Oscar Moreno, John Rameirez, Dorothy Bollman, and Edusmildo
Orozco, “Faster backtracking algorithms for the generation of
symmetry-invariant permutations,” Journal of Applied Mathematics
2:6 (2002) pp. 277-287.

[14] James K Beard, Jon C Russo, Keith Erickson, Michael Monteleone,
and Mike Wright, “Combinatoric collaboration on Costas arrays and
radar applications,” Proceedings of the IEEE 2004 Radar Conference,
April 26-29 2004, ISBN 0-7803-8234-X, pp. 260-265.

Jon C Russo was born in Geneva, NY in 1969. In 1992, Jon graduated with
distinction from the Cornell University School of Electrical Engineering in
Ithaca, NY. He stayed at Cornell to complete a Masters in Engineering in
1993, in the field of digital signal processing.
 While at Cornell, he was a teaching assistant for electronic design lab
and other classes. He went on to join the research team at Lockheed Martin
Advanced Technology Labs, working in signal processing, radar, hardware
design, and reconfigurable computing and compiler technologies. He has co-
authored papers in high performance computing and information technologies.
Research interests include cognitive architectures, communications
processing, and speech and image analysis. He was a co-author of [8].

Keith G. Erickson (SM’03–M04) became a Student Member in 2003 and a
Member of IEEE in 2004. He received his BS in computer engineering
(electrical engineering with an emphasis on computer science) from the New
Jersey Institute of Technology, Newark NJ, in 2004. He was born in Cherry
Hill, NJ in 1982.

He was on the New Jersey Institute of Technology Dean’s List every
semester, and was President of the SGA and of the Albert Dorman Honors
College. He also was President of Team Corona, a joint Burlington (NJ)
County College and New Jersey Institute of Technology team that built an
electric car. He was a co-author of [8].

James K Beard (M’64–LM’04) became a Member (M) of IEEE in 1964, Life
Member in 2004. He was born in Austin, TX in 1939. He receive a BS degree
from the University of Texas at Austin in 1962, an MS from the University of
Pittsburgh in 1963, and the Ph. D. from the University of Texas at Austin in
1968, all in electrical engineering.
 Between 1959 and 2009, he worked in Government laboratories, industry,
as an Adjunct Professor and as an individual consultant. He is the author of
[8] and a number of symposia papers and a book, “The FFT in the 21st
Century” (Springer, 2003). Current research interests include system
engineering solutions to homeland defense issues, estimation and decision
theory, radar and communications concept and waveform design, and digital
radar concepts.
 Dr. Beard is a member of AIAA, AOC, SPIE, and ASA. He is a member
of Phi Eta Sigma, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. He studied for
his Ph. D. under a GSRF Fellowship (matched U. Texas Austin and Ford
Foundation funding, administered by U. Texas Austin) and a NSF Fellowship.

Table 7. The last Costas array?

11 10 4 24 7 23 3 18 21 9 26 16 5 1 15 27 2 25 17 22 19 6 8 12 20 13 14

12 17 10 24 22 8 19 3 7 20 9 16 13 1 2 4 27 26 18 5 23 6 15 25 21 11 14

14 11 21 25 15 6 23 5 18 26 27 4 2 1 13 16 9 20 7 3 19 8 22 24 10 17 12

14 13 20 12 8 6 19 22 17 25 2 27 15 1 5 16 26 9 21 18 3 23 7 24 4 10 11

14 15 8 16 20 22 9 6 11 3 26 1 13 27 23 12 2 19 7 10 25 5 21 4 24 18 17

14 17 7 3 13 22 5 23 10 2 1 24 26 27 15 12 19 8 21 25 9 20 6 4 18 11 16

16 11 18 4 6 20 9 25 21 8 19 12 15 27 26 24 1 2 10 23 5 22 13 3 7 17 14

17 18 24 4 21 5 25 10 7 19 2 12 23 27 13 1 26 3 11 6 9 22 20 16 8 15 14

