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 
Abstract—Two innovations in search methodology for Costas 

arrays are presented here:  extensive exploitation of symmetries, 
and look-ahead row index exclusion tables.  Together, they 
achieve a reduction of more than a factor of four in 
computational requirements over conventional search methods.  
We examined the benefits of these innovations on Costas arrays 
of higher orders, and particularly on a search over order 28. 
 

Index Terms—Permutation matrices, tree searching, Costas 
arrays 

I. INTRODUCTION 

OSTAS arrays are permutation arrays that have the 
additional condition – the Costas condition – that no two 

ones in the matrix differ in position by the same number of 
both rows and columns.  When Costas arrays are used as 
frequency assignment schemes in frequency-agile waveforms, 
then, for any range or Doppler offset other than zero, the 
receiver response exhibits energy from cross-correlation of no 
more than one pair of pulses [1][2]. 

Finding Costas arrays is limited to either of two fortuitous 
number-theoretic generators and their extensions [3][4][5] or 
exhaustive search. The generators do not find all Costas arrays 
of a given order above about order seven [6], and Costas 
arrays have been found for orders as high as 27 that are not 
found or predicted by any of the generators [9][10].  The only 
known way to find all Costas arrays of orders greater than 
about seven is exhaustive search. 

Since there are N factorial permutation matrices of order N 
and there is no known way of restricting the space in which 
Costas arrays may exist, the search itself may be of factorial 
complexity.  The technique of backtrack programming [6][7] 
reduces the search complexity.  We observe a factor of about 
five in complexity for each increase in order using backtrack 
programming. 

Over time, the authors have developed an exhaustive search 
methodology that has provided the first exhaustive search over 
orders 24, 25, and 26 [8], and was the first to find an 
announced new Costas array of order 27 [9][10].   We present 
here two major innovations in this methodology not 
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previously reported that provide a search with less than one-
fourth the resources required by conventional search methods. 

II. THE BASE SEARCH METHODOLOGY 

A. Row Index Notation, the Difference Table, and the 
Costas Condition 

Here we express permutation matrices by row index 
notation, in which a sequence of N integers represents the row 
indices of the ones in successive columns.  From such a 
representation, we construct a difference matrix: row i and 
column j is the difference between the row indices for 
columns j and j+i.  An entry in the difference matrix is, given  
a shift of i columns, the number of rows to shift to overlap the 
dots for that column.  Thus if there are no duplicated 
differences on any given row, then no two ones differ in 
position by the same number of rows and columns, thus the 
Costas condition is met. 

B. An Example of the Difference Table 

We build the difference table by beginning with the Costas 
array in row index form.  For the second row, we subtract the 
row indices for each column from the row index of the 
preceding column.  We label this row D1 for differences in 
row indices for columns that are adjacent.  For the next row of 
the difference table, which we label D2, we enter the 
differences between the row indices for columns with indices 
that differ by two.   The row of the difference matrix for k 
columns apart has n-k entries, so we are done with n-1 rows.  
The difference table for the Costas array {4,2,5,1,3} is shown 
below as Table 1. 
Table 1.  Difference Table for {4,2,5,1,3} 

 
 

By using the difference table, verification that a given 
permutation matrix satisfies the Costas condition can be 
accomplished in polynomial time.  Use of the difference 
matrix to preclude row indices in the process of the search is 
backtrack programming with preclusion [7], which underlies 
all known practical search mythologies to date [11].  We begin 
here the most basic form of this process as a elementary 

Col 1 2 3 4 5

CA 4 2 5 1 3

D1 ‐2 3 ‐4 2

D2 1 ‐1 ‐2

D3 ‐3 1

D4 ‐1
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foundation for our method. 

C. Logic and Data Flow of the Elementary Search Method 

Here we describe one method of applying backtrack 
programming with preclusion to be used as the core engine for 
a Costas array search methodology.  We begin by tying the 
difference matrix to the Costas condition. 

We build a Costas array one row index at a time by using 
the difference matrix to determine which row indices are 
precluded for the next column, either because that row index is 
already taken or because its use would cause a duplication in a 
row of the difference matrix as available to that point.  Only 
row indices that are not precluded are accepted by the search 
algorithm, which then uses the accepted row index to update 
the difference matrix.  Thus, the method builds the difference 
matrix simultaneously with the set of row indices by using the 
preclusion matrix computed from the difference matrix to 
ensure that each succeeding choice of column index meets the 
Costas condition. 

We implement the preclusion matrix as follows.  We begin 
by precluding values already used as row indices.  Entries in 
row D1 in Table 1 represent the differences between adjacent 
columns.  We add these entries to the row index for the 
column preceding the yet-undetermined row index for the next 
column and the sums become forbidden row indices for the 
next column.  We add entries in row D2 in Table 1 to the row 
index for the column two preceding the yet-undetermined 
column to obtain more precluded row indices, etc.  The result 
is the difference-preclusion table. 

1) Illustration of the Method 
Please refer to Table 1.  We begin with the row index of the 

first column of four from our example of {4,2,5,1,3}.  The row 
index of the second column can be any row index except four, 
and following our example, we select two.  The difference 
matrix at this point consists of the title column of Table 1, 
columns one and two of the CA row and column one of row 
D1, or all except the last four columns of each difference row. 

For any number of available row indices, we build up a list 
of row indices precluded for the next column as the union of 
two sets:  (1) the row indices already used, and (2) precluding 
0 as the next row index to avoid repeating the row index 
difference of -2.  We only allow row indices of 1 through 5 in 
any case. 

As Table 2 shows, we preclude row indices either because 
they are already used by preceding columns, or because they 
would result in a repeated entry in the difference table row D1, 
the only row that is populated to this point.  We use the 
notation CA(j) for entry j in row CA, or the row index for 
column j, and D1(k) for entry k in row D1.  Note that one of 
the precluded row indices, the lone entry in the difference 
preclusion table, is outside the permissible range of columns, 
so we note it in Table 2, but it does not affect the choice of 
row index for the next column.  In general, a difference in row 
indices can be any integer from –(n-1) to +(n-1).  We see from 
Table 2 that the row indices one, three and five are available.  
In keeping with our selected example of {4,2,5,1,3} we select 
five. 

The difference matrix at this point consists of the first three 
columns of row CA, the first two columns of row D1, and the 
first column of row D2, or, all of Table 1 except the last three 
columns of each difference row.  We use the available values 
of the difference table and row indices to form a list of 
precluded row indices for column four.  In general, we begin 
with the row indices used in columns one through three, and 
these column indices are marked as used.  Then we add the D1 
row of the difference table to the row index of the column one 
back and mark those sums as forbidden for the next column 
index.  We add the D2 row to the row index of the row index 
two columns back, the row three indices to the row index from 
three columns back, continuing until we have no more 
available difference table rows.   Table 3 below shows the 
result for the row indices for the first three columns. 

At this point, the difference matrix consists of Table 1 
except the last two columns of each difference row.  The last 
row index is the only row not yet taken, if that row index 
meets the Costas condition.   The Costas condition is linked to 
the difference matrix, so we repeat the process of adding the 
available entries of the row labeled Dx to the Costas array row 
index for x columns back from the next column.  The result in 
this case is shown as Table 4.  Note that row index three is 
available in Table 4 so we have a Costas array. 

D. Summary  of Backtrack Programming with Preclusion 
in Search 

We have defined a method of backtrack programming with 
preclusion for a Costas array search methodology.  We 
perform the search in recursion levels, the current level 
number being the number of columns for which row indices 
have been defined to a given point in the search. 

We initialize the search at level one by defining the row 
index for the first column; these row indices are stepped from 
one to N (or, zero to N-1).  When a new row index is not 
precluded, it is accepted and the search moves to the next 
level.  Then the search over the available row indices is 
completed, the search moves back to the previous level. When 
we reach level N and a row index is not precluded, we have a 
Costas array and we declare it and drop back to level N-1.  
The entire search terminates when the row index search for 
level one is completed.  Thus, the search methodology flow is 
a continuing change of recursion level. 

E. Use of Bitmasks for Rows of the Difference Table and 
Preclusion Mask 

The difference table consists of numbers that may be 
anywhere from –(N-1) to (N-1).  Since the Costas condition is 
that no entry is ever allowed to repeat, then bit positions in a 
64-bit register can be used to represent a row of a difference 
matrix for searches up to order 33. 

The preclusion table is shown for all values that may be 
defined in the algorithm in the examples.  However, only row 
indices from zero to N-1 are significant in the implementation, 
so a 32-bit mask is sufficient.  This bitmask is initialized with 
the rows already used up to that point in the search, and the 
difference table is shifted by the amount of row indices and a 
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logical OR updates the necessary portion of the preclusion 
mask. 

 
Table 2.  Precluded row indices for the third column from two 
row indices 

 
 

 
Table 3.   Precluded row indices for the fourth column from three 
row indices 

 
 

 
Table 4.  Precluded row indices for the fifth column from four 
row indices 

 
 

F. Allocation of Tasks to Resources 

A “case” or task block is defined as a search beginning with 
a particular set of several row indices – three, four or five, 
depending on order and the desired task size.  We perform 
task allocation by assigning blocks of cases to a particular 
computer core.  An executive front end runs the search engine, 
reads the allocation files and writes logs of cases completed.  

These logs are compiled by an automated bookkeeping 
program that begins with the output of a comprehensive 
extended Costas array generator [8][9][12] so that new Costas 
arrays are apparent when the count changes.  The output of 
every run is a complete set of database files as provided by the 
authors at CISS 2006 and 2008, and is available on request 
[9][12]. 

G. Sets of Four and Eight Costas Arrays Related by 
Transposition and Rotation 

Given any Costas array, seven other permutation matrices 
can be defined that meet the Costas condition by a 
combination of transpositions and rotations, or, equivalently, 
by reversing the order of rows and columns and exchanging 
rows for columns; the former is more convenient for 
visualization but the latter is more convenient for 
implementation by computer.  If the Costas array or any 
rotated version of it is symmetrical there will be duplications 
and only three different Costas arrays will be found by 
rotation.  Thus asymmetrical Costas arrays come in sets of 
eight and symmetrical Costas arrays come in sets of four.  We 
refer to distinct Costas arrays as not being related to each other 
by any combination of rotations and translation.  We refer to 
the sets of four or eight as polymorphs of any one of the 
Costas arrays is not distinct from any other. 

Our example {4,2,5,1,3} is symmetrical so its set of 
polymorphs has four members.  These are shown in Table 5 
below. 

 
Table 5.  Polymorphs of {4,2,5,1,3} 

 
 

For our purposes of examining symmetries, we will use the 
full generality provided by an asymmetrical Costas array 
{4,2,3,5,1}, whose polymorphs, ordered by increasing row 
index, are shown in Table 6 below.  This Costas array can be 
found by using the methods of the above paragraph, 
“Illustration of the method” or verified by looking at its 
difference table. 
 
Table 6.  Polymorphs of {4,2,3,5,1} 

 

Row Index Reason

0 D1(1)+CA(2)

1

2 Taken

3

4 Taken

5

Row Index Reason

2 Taken

3 D1(1)+CA(3), D2(1)+CA(2)

4 Taken

5 Taken

6

7

8 D1(2)+CA(3)

Row Index Reason

‐3 D1(3)+CA(4)

‐2

‐1 D1(1)+CA(4), D3(1)+CA(2)

0

1 Taken

2 Taken

3

4 Taken, D1(2)+CA(4), D2(2)+CA(3)

5 Taken

6 D2(1)+CA(3)

2 4 1 5 3

3 1 5 2 4

3 5 1 4 2

4 2 5 1 3

1 4 3 5 2

1 5 3 2 4

2 4 3 1 5

2 5 3 4 1

4 1 3 2 5

4 2 3 5 1

5 1 3 4 2

5 2 3 1 4
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III. INNOVATIONS IN THE SEARCH METHODOLOGY 

A. Symmetries Used for Efficiency in Costas Array Search 
Methodology 

1) Noting Space Searched Provides a Factor of Two 
In Table 5 and Table 6, adding the row indices from the first 

and last Costas array always results in six or N+1.  Thus when 
stepping through the cases, a row index of k will always have 
a polymorph with row index N-k+1, so stepping k from 0 to 
[(N-1)/2]-1, rounded down for even N, will find all the Costas 
arrays for a particular n if the polymorphs are added to the list.  
Thus, we reduce the required search space by a factor of about 
two.  And, when the order N is odd and the column number is 
(N-1)/2, only row indices for column two up to (N-1)/2-1 need 
be searched for the same reason. 

The fact that each Costas array found has four or eight 
polymorphs opens the possibility that other symmetries, or 
proper posing of the symmetries with an appropriately 
structured search methodology, may reduce the required 
search space by a factor of four, or an additional factor of two.  
Search methodologies specialized for symmetrical Costas 
arrays are far more efficient than more general search 
methodologies and have been used to show that no 
symmetrical Costas arrays for orders 32 or 33 exist [13].  
Thus, with this as an example of possible gains, we look at 
Table 6 for further symmetries. 

One example, the “center dot” invariance is apparent from 
Table 6.  If a Costas array has a one at location ((N-1)/2,(N-
1)/2), all Costas arrays obtained by transposition and rotation 
will also have a center dot. 

One economy of search is at the beginning of the search 
space.  Costas arrays beginning with a row index of one in the 
first column can be found from Costas arrays of one order 
smaller by “adding a dot” so this part of the search space can 
be omitted. 

2) Innovations in Symmetry Exploitation 
In addition to eliminating the second half of the first row, 

the search employs a technique referred to as "progressive 
exclusion" [14][8] in order to leverage the eight-fold 
symmetry of the square.  We call it progressive exclusion, 
because as the first column index increases toward the middle, 
a larger number of possible dots on the edges of the square are 
marked as not being needed to include in the search.  This is 
possible because exhaustively searching the previous top row 
dots guarantees that symmetrically corresponding edge dots 
have been covered.  In other words, if the top row has fully 
explored the first d dots, then the nearest d-1 dots to any 
corner, in addition to each corner, have been covered through 
symmetry.  It is important to note that the current position 
being explored is not included in this count since it hasn't been 
exhausted. 

As an example, consider an exhaustive search of Costas 
arrays of order seven.  In the following discussion, dot 
locations are denoted by their row and column coordinates.  
When the search first starts out and we are exploring 
possibilities for the very first dot in the upper-left corner, we 
may not eliminate any dots due to progressive exclusion 

(although we may eliminate some due to the normal Costas 
constraints like row/column orthogonality).  That is, the dot in 
position (7,7), must be considered as a possibility.  Once 
position (1,1) has been fully exhausted, we may eliminate all 
corner dots from further search efforts, because any Costas 
array with a dot in any corner would have already been 
uncovered by exhausting the (1,1) case.  This concept is 
advanced for each column index for which the search is 
exhausted.  Once dots in positions (1,1) and (1,2) have been 
fully searched, subsequent efforts may omit both the corner 
dot, and dots one step from any corner.  The number of dots 
excluded progresses as the starting row position approaches 
the middle, as shown in Figure 1 below:   

 

 
Figure 1.  Innovative Symmetry logic 

In Figure 1, a black square indicates the current dot position 
under evaluation in the search.  A gray square indicates dot 
positions that are eliminated from consideration in the search 
due to progressive exclusion.  As a side note, the first step in 
Figure 1, evaluating dot position (1,1), is not necessary 
because all arrays of a given order with a dot in position (1,1) 
may be found by attempting corner dot extensions to the 
previous order. 

We cannot apply the logic directly to the second row and 
column while searching with the corner dot.  The search is 
directed by the dot on the first row, so that dot is guaranteed to 
be covered in all symmetry transformations. However, the 
concept could be extended as follows:  If your searched had 
completed all possibilities with fixed starting dots (1,1) and 
(2,3), you could eliminate position (3,2) in all subsequent 
searches under (1,1). 

Also, for example, if you searched completely all 
possibilities under (1,2) and (2,3), then you should be able to 
eliminate all symmetric representations of that pair of dots 
from future searches, but the overhead for this would 
outweigh gains obtained through the reduction in search space. 

Note that the last dot in Figure 1 need not be searched 
because there is no place for the last column index; this is the 
rational for the maximum row index for column 1. 

B. More than One Level with the Preclusion Table 

An innovation for search methodologies first presented here 
is the use of preclusion tables for more than one column.  We 
use a count of recursion levels entered as an architecture-
independent measure of resource requirements for a search 
methodology.  Figure 2 shows plots orders of recursion 
entered, with no look-ahead and with full look-ahead, for 
order 28 with symmetry exploitation, for a search over row 
indices in a block that begins with  row indices 
{6,26,23,13,15…}. 

Note that, with look-ahead, (the dotted line), the vast 
majority of backtrack programming with preclusion executes 
at recursion levels 14 through 19, and the only recursion levels 
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above 23 were those that led to the lone Costas array.  This 
supports a conjecture that for column number (equivalent to 
recursion depth) of 18 and above, that preclusion tables one or 
two recursion levels higher than the current recursion search 
will show no available row indices and thus allow 
backtracking more often.  This is indeed the case. 

 

 
Figure 2.  Orders of recursion tabulated over a limited range of 
search with and without look-ahead 

IV. METHODS OF GENERATION 

A. Concatenation and deletion 

1) Taylor and Golomb extensions 
Taylor and Golomb have extended the number-theoretic 

Welch and Lempel-Golomb generators by deleting corner dots 
and by augmenting existing Costas arrays with “Costas 
arrays” of order one and two [3][4][5].  Other possibilities 
exist, such as the example of augmenting two order three 
Costas arrays to form an order six Costas array. 

 
Figure 3.  Augmenting two order three Costas arrays 

Unfortunately, this interesting example is a rare occurrence 
that is not seen at higher orders.  This example is very 
interesting because it has two zero quadrants, and the two 
center antidiagonals are both all zeros. 

However interesting this example may be, an examination 
of the difference matrix reveals that the likelihood of examples 
for larger orders is vanishingly small.  The first half of each 
row is identical to those of each Costas array, but the number 
of entries in the difference matrix from dots from both Costas 
arrays exceeds the number of dots from within each one by 
about a factor of two, and the likelihood that there will be no 
duplications becomes vanishingly small for relatively low 
orders.  This is less true when Costas arrays of small orders 

are used to augment larger Costas arrays, as Taylor’s success 
by adding one and two dots attests. 

2) By the Authors 
The generators and extensions used by the authors for many 

years [6][12] uses a form of augmentation that we call 
spinning in which a Costas array of order N-1 is rotated end-
around and single dot is inserted at all possible points in each 
rotated matrix, and the resulting permutation matrix checked 
for the Costas condition.  Although a number of Costas arrays 
are found by this method, the number of Costas arrays 
decreases with order, and none have been found by this 
method for order greater than 100. 

The authors generalized the Lempel-Golomb generator by 
offsetting the exponents in the powers to which the Galois 
field elements were taken.  Zero is not allowed as the power to 
which a Galois field element is taken because that means that 
the other power of a Galois field element must be zero, which 
is not possible [8].  By adding a dot at the row and column in 
the resulting permutation matrix where both exponents would 
be zero, a permutation matrix results in which all dots other 
than the inserted dot are guaranteed to meet the Costas 
condition.  Occasionally this results in a Costas array not 
found by any other method. 

B. Interleaving 

Two permutation matrices of order differing by at most one 
can be interleaved in a checkerboard to form another 
permutation matrix.  Entries in even numbered rows of the 
difference matrix are double the entries in the difference 
matrices of each of the two Costas arrays; this amounts to the 
condition that the difference matrices of the two Costas arrays 
not have duplications between them.  The odd numbered rows 
of the difference matrix for the augmented matrix, however, 
represents counts of the row shifts between the two interleaved 
Costas arrays, and amounts to a new Costas condition of 
complexity about twice that of each separately; thus the 
likelihood of checkerboard augmented Costas arrays for large 
orders is vanishingly small. 

V. RESULTS 

A. Effect of Innovations on Costas Array Space 

The occurrence of al known Costas arrays from order three 
through 400, plotted as occurrence as a function of the first 
row index a[0], is shown as Figure 4.  The occurrence is 
relatively flat across values of a[0] because Welch arrays 
dominate the numbers for large orders, and the singly-periodic 
quality of these arrays means that whenever one exists for a 
given value of a[0] then another exists for every other value of 
a[0]. 

When the symmetry conditions of II.A.2 are applied, the 
surviving Costas arrays are shown in Figure 5.  Note that 
limiting the search to a[j] less than [(N-1)/2] provides a factor 
of two, but that the techniques presented in III.A.2)III.A.2 
dramatically reduce the numbers of Costas arrays even in that 
space. 

The searchable space of interest in 2010 is orders through 
28.  The occurrence of all Costas arrays through order 28 is 
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shown as Figure 6.  The effect of the symmetry condition on 
this distribution is shown as Figure 7. 

 

 
Figure 4.  Occurrence of all Costas arrays from orders three 
through 400 as a function of a[0] 

 
Figure 5.  Costas arrays through order 400 that satisfy symmetry 
exclusion conditions 

B. Discovery of Last Costas Array of Order 27 

One of us (Erickson), using the idle resources of a 38-core 
processing farm dedicated to compiler development proved 
pivotal in discovering the final Costas array of order 27.  We 
developed a distribution method that allowed spawning remote 
jobs on the farm to process cases at an idle priority.  We then 
collected these results into our pre-existing log format for 
cataloging.  To comply with the usage requirements of the 
farm, we reduced each job to a single case at level five.  Each 
job at this granularity ran for about two minutes, and the farm 
processed 1,965,582 cases.  One of these cases was the newly 
discovered Costas array shown below with its polymorphs as 
Table 7.  This Costas array was found about the same time as 
part of another effort using a supercomputer [9][10]. 

C. Metric for Representing efficiency of Methodologies 

An implementation-independent measure of the 
computational resources used in a search is the number of 
times that a recursion level is increased.  Figure 2 above 
shows a profile of recursion levels entered for a particular 
limited search.  Total recursion-level-entered counts are a 
measure of total resources used in a run. 

D. Quantification of Gains from the Innovative Methods 

Total recursions-entered counts for complete searches over 
orders 14 through 20 for no extra preclusion tables and for all 

available are shown below as Figure 8, both with full 
symmetry exploitations; a plot with all available look-ahead 
tables and only conventional symmetry exploitation is 
included to illustrate that effect.  Close analysis of the raw 
data shows that the extra tables provide just over 50 percent 
improvement over simply limiting the first row index to [N/2].  
The increase in required resources as order increases is about a 
factor of 4.86. 

 

 
Figure 6.  Costas arrays from order three through 28 

 
Figure 7.  Costas arrays through order 28 that satisfy symmetry 
exclusion conditions 

Because Figure 8 covers several orders of magnitude, the 
ratios gained by symmetry exploitation and look-ahead 
preclusion tables are not shown with good accuracy.  Figure 9 
below shows the ratios of recursions entered with and without 
each technique.  Separate curves are shown for odd and even 
orders because slightly different properties of the search. 

A simple least-squares fit of the form /A B N  to the 
curves of Figure 9 gives asymptotes of factors of 0.98 for 
omitting the corner dot, 0.53 for full symmetry exploitation 
and 0.32 for look-ahead.  These curves, extrapolated to orders 
27 and 28, predict factors of 0.872 for omitting the corner dot, 
0.60 for full symmetry exploitation and 0.43 for look-ahead.  
These figures are borne out by searches over small ranges of 
order 28. 

The effect of symmetry exploitation is illustrated by a plot 
of the number of iterations entered, with and without 
symmetry exploitation; such is shown below as Figure 10. 

Note that the number of cases for the searches for the corner 
dot and the next-to-corner dot is large compared to other row 
indices for the first column. 
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Figure 8.  Number of Iterations Entered vs. Order:  Effect of 
Symmetry Exploitation and Multiple Preclusion Tables versus 
Order of Search 

E. Innovations in Symmetry Exploitation 

 
Figure 9.  Ratios of Recursions-Entered Gains for Look-Ahead 
and Symmetry Exploitation for Orders 14 through 20 

 
Figure 10.  Number of Iterations Entered versus First Column 
Index for Order 21, With and Without Symmetry Exploitation 

The total advantage for a search over order 28, the current 
lowest un-searched order, is 

 0.60 0.43 0.872 0.225    
which does not include the factor of two obtained by stepping 
the first row index from 0 to [(N-1)/2]-1. 

VI. CONCLUSIONS AND CONJECTURES 

A. Conclusions 

We have demonstrated a search methodology with two new 
innovations:  full symmetry exploitation and extended look-
ahead for the null set in available row indices.  We further 
point out that the Taylor extension method of adding a corner 
dot makes search for a[0] at zero unnecessary.  The combined 
effect of these is better than a factor of four better than 
conventional methods that simply limit the search for values 
of the first row index that stop short of the center point. 

B. Conjectures and Predictions 

An engaging convention that began with Solomon W. 
Golomb’s landmark 1984 paper with Herbert Taylor is 
presentation of unproven results or simply challenges to the 
community as conjectures to be proven or disproven.  Here we 
present a few selected conjectures as areas for further work 
and predictions of future results. 

 No Costas arrays above order six exist that have 
two empty quadrants. 

 Orders 32 and 33 will be searched within the next 
15 years.  None will be found. 

 No Costas arrays that are not disclosed in the 
current literature [6][9][10][12] exist, other than 
those that may be produced by the existing 
generators and their extensions as reported on in 
existing literature [6][13]. 

 The number of Costas arrays for a given order 
N>23 does not exceed N2. 

 The number of consecutive orders K for which no 
Costas arrays exist has no upper bound.  However, 
for any K an order N exists for which Costas arrays 
do exist and |K/N-1| has no lower bound. 

 Costas arrays will be used in communications 
waveforms as part of a shared bandwidth strategy 
for essentially all digital communications systems.  
Similarly, Costas arrays will be used in essentially 
all digital radar waveforms designs as part of a 
strategy for mitigation of band sharing, mutual 
interference, interference with other systems, and 
similar purposes. 

 Costas arrays will be used as part or all of designs 
of digital fingerprinting systems involving imagery 
and other multidimensional data. 
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Table 7.  The last Costas array? 

 

11 10 4 24 7 23 3 18 21 9 26 16 5 1 15 27 2 25 17 22 19 6 8 12 20 13 14

12 17 10 24 22 8 19 3 7 20 9 16 13 1 2 4 27 26 18 5 23 6 15 25 21 11 14

14 11 21 25 15 6 23 5 18 26 27 4 2 1 13 16 9 20 7 3 19 8 22 24 10 17 12

14 13 20 12 8 6 19 22 17 25 2 27 15 1 5 16 26 9 21 18 3 23 7 24 4 10 11

14 15 8 16 20 22 9 6 11 3 26 1 13 27 23 12 2 19 7 10 25 5 21 4 24 18 17

14 17 7 3 13 22 5 23 10 2 1 24 26 27 15 12 19 8 21 25 9 20 6 4 18 11 16

16 11 18 4 6 20 9 25 21 8 19 12 15 27 26 24 1 2 10 23 5 22 13 3 7 17 14

17 18 24 4 21 5 25 10 7 19 2 12 23 27 13 1 26 3 11 6 9 22 20 16 8 15 14


