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Overview
Finite fields and Costas arrays
Important properties of finite fields
Costas arrays and the Difference Triangle
Use of polynomials in finite fields to define a sequence of 
integers

When the sequence of integers is a permutation
When the sequence of integers is a Costas array

New results
Definitions of spaces in GF(q) for Costas arrays
Progress in definition of Costas array space in GF(q)

Other News
Costas array database extended to order 400
Progress report on search over order 27
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Finite fields: Basis for Existing 
Costas array generators

The Welch generator of singly-periodic 
Costas arrays
The Lempel generator of symmetrical Costas 
arrays
The Golomb generator of most other Costas 
arrays
Golomb, Taylor, Rickard, Beard 
generalizations are based on these
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Properties of Finite Fields
Finite fields of order q, denoted by GF(q)
Any implementation of GF(q) is isometric to all other 
implementations
GF(q) exists only when q=pk, p a prime, k>0
Support commutative and associative addition, subtraction, 
multiplication, division
In every GF(q) there is a zero and a one
Every element x has the property xq=x
Other than zero and one, magnitude is not a meaningful concept
There exist Φ(q-1) primitive elements αi

Where Φ(q-1) is the Euler totient function
Each primitive element is of order q-1
Powers of each αi cycle through all the nonzero elements

Every element has the property p.x=0
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An Implementation of GF(q)
Simplest example is integer arithmetic modulo a prime
Vector extensions, q=pk, k>1

We use polynomials of order k-1
Each polynomial coefficient is an integer modulo p

Vector extension arithmetic is conventional polynomial arithmetic 
with additional operations

Result coefficients are taken modulo p
Polynomials that result from multiplication are taken modulo a 
generating polynomial
Division by x is multiplication by xq-2

The generating polynomial
Is monic and of order k
Is irreducible in GF(q)
Usually is selected so that x is a primitive element
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Examples of Vector Extensions

GF(27)
Generating polynomial x3+2x+1
Twelve primitive elements, x, xr, r does not 
contain factors of 26

GF(64)
Generating polynomial x6+x+1
Thirty-six primitive elements, x, xr, r does not 
contain factors of 63

Note that all elements in GF(2k) are their own 
negatives because p.x=0
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Polynomial Fit to a Sequence

Polynomial is always of order q-1 or less

Express independent variable x and sum φx
as powers pj of a primitive element α

Express this in vector-matrix notation
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The Vandermonde Matrix
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The Order q-1 Vandermonde Matrix
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Values of |M| for q to 400
q-1 log(|M|) Val(M) q-1 log(|M|) Val(M) q-1 log(|M|) Val(M) q-1 log(|M|) Val(M) 
2 0 1 60 45 50 156 117 28 270 135 270
3 0 1* 63 0 1* 162 0 1 276 207 60
4 3 3 66 0 1 166 83 166 280 70 228
6 3 6 70 35 70 168 42  282 0 1
7 0 1* 72 18 27 172 129 93 288 72  
8 2  78 39 78 178 0 1 292 219 155
10 0 1 80 20  180 135 19 306 0 1
12 9 5 82 0 1 190 95 190 310 155 310
15 0 1* 88 22 34 192 48 112 312 78 25
16 4 13 96 24 22 196 147 14 316 237 114
18 0 1 100 75 91 198 99 198 330 0 1
22 11 22 102 51 102 210 0 1 336 84 148
24 6  106 0 1 222 111 222 342 171  
26 0 1* 108 81 76 226 0 1 346 0 1
28 21 17 112 28 98 228 171 107 348 261 136
30 15 30 120 30  232 58 144 352 88 311
31 0 1* 124 93  238 119 238 358 179 358
36 27 6 126 63 126 240 60 177 360 90  
40 10 32 127 0 1* 242 0 1* 366 183 366
42 0 1 130 0 1 250 0 1 372 279 269
46 23 46 136 34 100 255 0 1* 378 0 1
48 12  138 0 1 256 64 241 382 191 382
52 39 23 148 111 44 262 131 262 388 291 274
58 0 1 150 75 150 268 201 82 396 297 63
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Powers of M When |M|=1
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Eigenvectors of M
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The Lempel-Golomb Generators

Form of the Lempel and Golomb generators

Lempel when k=1, Golomb when k>1
Lempel Costas arrays are symmetrical
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The Welch Generator

Form of the Welch generator

Produces Costas arrays of order p-1

Offset r is arbitrary; these Costas arrays are 
singly periodic
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These Examples Raise Questions

Classical generators produce trivially simple 
generator vectors
The generalizations by Taylor, Rickard, and 
Beard are generalizations of these
Is there a fundamental relationship that 
produces Costas arrays from simple 
generator vectors?
What about non-generated Costas arrays?
How do we find other generator vectors?
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The Difference Triangle
Description

Top row is column indices of a permutation
Successive rows are differences between indices in the top 
row

This is our algebraic link between the Costas 
condition and Costas arrays

A base for backtrack programming searches
A way to check permutations for the Costas condition

Pose the difference triangle in terms of generator 
polynomials
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Definition: Difference Triangle

Elements

Example

,

, 0

, 0
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i j
j j i

p i
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Costas array: 2 4 0 3 1
Difference 1: 2 4 3 2
Difference 2: 2 1 1
Difference 3: 1 3
Difference 4: 1
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The Value of the Difference Triangle

Sequence is a permutation if
The elements of the first row are all between zero 
and N-1
None of the differences are zero

Sequence is a Costas array if
There are no duplications in any difference row
Note that row N-1 has only one element and thus 
is not relevant to the Costas condition
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The Difference Triangle in GF(q)

Pose each row of the generator equation

Each element pi of the top row of the 
difference triangle is replaced by α(pi)
Difference rows become quotient rows
Every element in the new difference triangle 
is α to the power of the corresponding 
element in the old difference triangle

Generator Equation:

Row i: iT p
i i

M l gp

rm l gp α

⋅ =

⋅ = =
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Elements of The Difference Triangle in GF(q)

Equation for the elements

The number of difference elements is
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Conditions for Permutation in GF(q)

Top row may have no zeros
None of the ratios in the difference rows may 
be the unity element

Preferred form for defining spaces
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Costas Condition

No duplications

Clearing the denominators

Preferred form for defining spaces

, , 0
T T
j j k

T T
j i j i k

rm l rm l
i k

rm l rm l
+

+ + +

⋅ ⋅
≠ >

⋅ ⋅

( ) ( ) ( ) ( )T T T T
j j i k j i j krm l rm l rm l rm l+ + + +⋅ ⋅ ⋅ ≠ ⋅ ⋅ ⋅

( ) 0T T
j j i k j i j kl rm rm rm rm l+ + + +⋅ ⋅ − ⋅ ⋅ ≠



March 21, 2008, 2:15 PM Copyright © 2008 James K Beard, ISSS, IEEE
All Rights Reserved

Slide 23 of 43

Number of Row Differences

Row i has N-i entries
For k entries, there are k.(k-1)/2 differences
Thus row i has (N-i).(N-i-1)/2 differences
Thus the number of differences is
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An Issue with the Costas Condition

The Condition is

Or

But exponentiation of any element is modulo q-1 so 
that this condition cannot be met unless

Or

( ) ( ) ( ) ( ) 0T T T T
j j i k j i j krm l rm l rm l rm l+ + + +⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ≠
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0mod 1j j k k j i j kp p p p q+ + + ++ − − ≠ −

2 3q N≥ −
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What Do De Do About N<q-2?
The classical generators

In the Lempel-Golomb generator, we set the extra 
element of gp to zero
There was no extra element in the Welch 
generator

Our alternatives
Use a rank N submatrix of M and thus a shorter l
Set the extra elements of gp to zero
Define the remaining elements of gp to an 
arbitrary scheme such as an identity matrix
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Identity Matrix for the Extra Elements

Add an identity matrix of order q-N-2 as the 
lower right submatrix
An additional constraint on l is

Base vector l determining this submatrix is
, 2, 2 N qN qM l ls −− ⋅ =

#
0 , 2, 2

1#
, 2 , 2 , 2 , 2

N qN q

T T
N q N q N q N q
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M M M M

−−

−

− − − −

= ⋅
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Definition of the Matrix and Vector
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Using the Conditions in GF(q)

The permutation and Costas conditions
Constrain the space of  l
May be used as a basis to define a restricted 
space for l

This restricted space may be used to define a 
search of low complexity
If the space can be shown to be null for a 
particular order, then this proves that there 
are no Costas arrays of that order
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Condition on l When N<q-1
Condition that l must satisfy is

Rank of this condition is q-N-1
Call the vector space spanned by MN,q-2 S0
The vector l-l0 cannot be in S0
The vector l0 is zero if the extra elements of ls
are set to zero
The issue goes away when a submatrix of M
is used – extra elements of l are zero

( )0, 2 0N qM l l− ⋅ − =
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Permutation Constraints in GF(q)

The permutation condition is

The total constraint can be found by finding the 
intersection of each of these rank N-1 spaces

Call the rank 1 complement of each space: SPj,i

Find the union SPU of these vector spaces
The vector l must be in the complement that space \SPU

The space \SPU can have a rank of up to N-1

( ) 0, 0
T

j j irm rm l i+− ⋅ ≠ >



March 21, 2008, 2:15 PM Copyright © 2008 James K Beard, ISSS, IEEE
All Rights Reserved

Slide 31 of 43

Costas Condition in GF(q)
The Costas condition

The vector l must be in the rank 2 space of each 
matrix in parenthesis
The allowable space of l is the complement of the 
intersection of the complements all these rank 2 
spaces

Complement the space of each constraint; call this rank N-
2 space SCj,I,k
Find the union of these rank 2 spaces; call this space SCU
The vector l must be in the complement of this space \SCU

This space will have a rank of zero, one or two

( ) 0, , 0T T
j j i k j i j kl rm rm rm rm l i k+ + + +⋅ ⋅ − ⋅ ⋅ ≠ >
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Finding the Space of l
Find the complement of the allowed vector space of l as

The vector space of l is the complement of this space

Definitions of the Spaces

0SF S SPU SCU= ∪ ∪

\l SF∈
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0 , 2: 0
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oN q
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Linear Algebra in GF(q)
Method suggested by the definitions of the spaces

Construct unions by concatenating columns of vectors 
that span the null spaces of l
Use Gram-Schmidt orthogonalization to find the rank
Use the orthogonal vectors to construct a matrix that 
spans the complement of the space

The rank of the space of l will be zero, one or two
If the rank is zero there are no Costas arrays of order 
N
If the rank is one or two then any linear combination 
will generate Costas arrays
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Self-Annihilating Vectors in GF(q)

The dot product of a nonzero vector with itself 
may be zero
Example
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Dealing with Self-Annihilating Vectors

They occur often in our work
All but two rows of M are self-annihilating
All gp corresponding to permutations are self-annihilating

Orthogonalization won’t work with self-annihilating 
vectors

Solution:  Handle them in pairs
If two vectors aren’t orthogonal, replace them in the matrix 
with their sum and difference
The new vectors won’t be self-annihilating and will span the 
same space
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Limitations of Linear Algebra

Definition of the permutation condition space

Definition of the Costas condition space

The nature of these equations is Diophantine
The concept of magnitude isn’t there in GF(q)
Only discrete values are allowed, ergo 
Diophantine equation concepts apply

( ) 0, 0
T

j j irm rm l i+− ⋅ = >

( ) 0, , 0T
j j i k j i j kl rm rm rm rm l i k+ + + +⋅ ⋅ − ⋅ ⋅ = >
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Lessons Learned
Note nature of constraints in terms of linear algebra principles

Permutation null space is rank 1, union over j,i is rank 1 to full rank; 
intuition tells us that it is low rank
Costas condition null space is rank 2, union over j,i,k is rank to to full 
rank; intuition tells us that it is high rank for larger N

Tests in GF(q) contradict these interpretations
Posing the 56 Costas arrays of order 26 as gp in GF(q), q=67, 71 and 
others  and concatenating them as columns in order 26 matrices 
produces rank 25 or 26 matrices, not rank 0, 1 or 2 matrices
Q-R decomposition of Costas condition matrices in GF(q) produces 
vector spaces that do not conform to the original condition

Odd observation:  upper limit on C(N) of N2 holds except for orders 5-23, 
holds exactly for order 256; this hints at a rank 2 generator!
Conditions in GF(q) verified for known Costas arrays, but linear algebra 
derived results don’t always check out the way they would in real or 
complex fields



March 21, 2008, 2:15 PM Copyright © 2008 James K Beard, ISSS, IEEE
All Rights Reserved

Slide 38 of 43

Ongoing Work
Find new ways to describe the spaces

Defined by the permutation condition
Defined by the Costas condition
Use wpi instead of gpi

Find the union or intersection of the sets of the 
individual conditions

Linear algebra concepts led to focus on unions of sets
Diophantine concepts may lead to use of intersections of 
sets

Examine the conditions as Diophantine equations
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Summary
We found simple linear algebraic equations in GF(q)
for permutation and Costas conditions

Produced from difference triangle
Conditions found for validity, e.g. q>2N-3
Our equations are linear and quadratic

Limitations on linear algebra concepts
Self-annihilating vectors common
Inverse and Q-R decomposition defined, SVD not defined
Some equations simply Diophantine in defining spaces
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Other Related Work
Database from CISS 2006 extended to order 400

Too large for single-sided data DVD: 6.9 GB
Available as 2.2 GB Zip archive on http://jameskbeard.com
Fit to cumulative curve, orders 200-400:  0.92143.(Order)2.5253

All-new interface
Designed to be run from HD for database on CD-ROM or HD 
(see below for screen shot)
Outputs CSV files for direct use by Matlab, Excel, C…

Search over order 27
Not yet complete
We believe that the 196 Costas arrays of order 127 on the CISS 
2006 database are all of them

http://jameskbeard.com
http://jameskbeard.com
http://jameskbeard.com
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Cumulative Distribution
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Database Interface Screen Shot
Costas arrays from generators of order 2 to 400
Costas arrays of order  26, method: generated
*******************************************************************************

Order           All     Essential   Symmetrical G-Symmetrical
22          2052           259             5  220
25            88            12             2  0

Current order:    26            56             8             2  0
27           196            28             7  0
28           712            89             0  336

*******************************************************************************
Current options:

No. Value, Description
1      F, T => all CAs to order 26; F => generated CAs to order 400
2     26, Order of CAs for output
3      F, T => filter by generator method; F => output all
4      0, If previous option is T, filter by generator method 1 to 19
5      1, 1 => All, 2 => Essential, 3 => Symmetrical, 4 => G-Symmetrical
6      0, 0 => Output CAs are row indices from 0 to N-1, 1 => from 1 to N
7 REWIND, APPEND => append to existing output files; REWIND => overwrite
8 C:\Data\IEEE\Papers\CISS2006\CDROM_Image\, Path for database top-level folder
9 Order_26, Pathname for output text

Enter option 1-9 to change, 10 for HELP, or 0 to proceed:
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