CISS 2008 Costas Array Generator Polynomials in Finite Fields

James K Beard Life Senior Member, IEEE jkbeard@ieee.org http://jameskbeard.com

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

March 21, 2008, 2:15 PM

Overview

- Finite fields and Costas arrays
- Important properties of finite fields
- Costas arrays and the Difference Triangle
- Use of polynomials in finite fields to define a sequence of integers
 - When the sequence of integers is a permutation
 - When the sequence of integers is a Costas array
- New results
 - Definitions of spaces in *GF(q)* for Costas arrays
 - Progress in definition of Costas array space in *GF(q)*
- Other News
 - Costas array database extended to order 400
 - Progress report on search over order 27

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 2 of 43

Clss 2008 Finite fields: Basis for Existing Costas array generators

- The Welch generator of singly-periodic Costas arrays
- The Lempel generator of symmetrical Costas arrays
- The Golomb generator of most other Costas arrays
- Golomb, Taylor, Rickard, Beard generalizations are based on these

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 3 of 43

Properties of Finite Fields

- Finite fields of order q, denoted by GF(q)
- Any implementation of *GF(q)* is isometric to all other implementations
- GF(q) exists only when q=p^k, p a prime, k>0
- Support commutative and associative addition, subtraction, multiplication, division
- In every *GF(q)* there is a zero and a one
- Every element x has the property $x^{q}=x$
- Other than zero and one, magnitude is not a meaningful concept
- There exist $\Phi(q-1)$ primitive elements a_i
 - Where $\Phi(q-1)$ is the Euler totient function
 - Each primitive element is of order q-1
 - Powers of each α_i cycle through all the nonzero elements
- Every element has the property p x=0

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

An Implementation of GF(q)

- Simplest example is integer arithmetic modulo a prime
- Vector extensions, q=p^k, k>1
 - We use polynomials of order k-1
 - Each polynomial coefficient is an integer modulo p
- Vector extension arithmetic is conventional polynomial arithmetic with additional operations
 - Result coefficients are taken modulo p
 - Polynomials that result from multiplication are taken modulo a generating polynomial

All Rights Reserved

- Division by x is multiplication by x^{q-2}
- The generating polynomial
 - Is monic and of order k
 - Is irreducible in GF(q)

• Usually is selected so that x is a primitive element March 21, 2008, 2:15 PM

Slide 5 of 43

Examples of Vector Extensions

- GF(27)
 - Generating polynomial x³+2x+1
 - Twelve primitive elements, x, x^r, r does not contain factors of 26
- GF(64)
 - Generating polynomial x⁶+x+1
 - Thirty-six primitive elements, x, x^r, r does not contain factors of 63
- Note that all elements in GF(2^k) are their own negatives because p·x=0

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 6 of 43

CISS 2008 Polynomial Fit to a Sequence

- Polynomial is always of order *q*-1 or less $\lambda_0 + \lambda_1 \cdot x + \lambda_2 \cdot x^2 + \ldots + \lambda_{N-1} \cdot x^{N-1} = \phi_x$
- Express independent variable x and sum φ_x as powers p_i of a primitive element α

$$\sum_{i=0}^{N-1} \lambda_i \cdot \alpha^{i \cdot j} = \alpha^{p_j}, \quad j \in \{0 \dots N-1\}$$

• Express this in vector-matrix notation $M \cdot \underline{l} = \underline{gp}$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 7 of 43

CISS 2008 The Vandermonde Matrix

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Slide 8 of 43

The Order q-1 Vandermonde Matrix

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Slide 9 of 43

CISS 2008 Values of */M/* for q to 400

q-1	log(M)	Val(M)	q-1	log(M)	Val(M)	q-1	log(M)	Val(M)	q-1	log(M)	Val(M)
2	0	1	60	45	50	156	117	28	270	135	270
3	0	1*	63	0	1*	162	0	1	276	207	60
4	3	3	66	0	1	166	83	166	280	70	228
6	3	6	70	35	70	168	42		282	0	1
7	0	1*	72	18	27	172	129	93	288	72	
8	2		78	39	78	178	0	1	292	219	155
10	0	1	80	20		180	135	19	306	0	1
12	9	5	82	0	1	190	95	<mark>1</mark> 90	310	155	310
15	0	1*	88	22	34	192	48	112	312	78	25
16	4	13	96	24	22	196	147	14	316	237	114
18	0	1	100	75	91	198	99	198	330	0	1
22	11	22	102	51	102	210	0	1	336	84	148
24	6		106	0	1	222	111	222	342	171	
26	0	1*	108	81	76	226	0	1	346	0	1
28	21	17	112	28	98	228	171	107	348	261	136
30	15	30	120	30		232	58	144	352	88	311
31	0	1*	124	93		238	119	238	358	179	358
36	27	6	126	63	126	240	60	177	360	90	
40	10	32	127	0	1*	242	0	1*	366	183	366
42	0	1	130	0	1	250	0	1	372	279	269
46	23	46	136	34	100	255	0	1*	378	0	1
48	12		138	0	1	256	64	241	382	191	382
52	39	23	148	111	44	262	131	262	388	291	274
58	0	1	150	75	150	268	201	82	396	297	63

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Slide 10 of 43

CISS 2008 Powers of *M* When */M/=*1

$$M^{2} = (q-1) \cdot E = (p-1) \cdot E, \ M^{4} = (p-1)^{2} \cdot E^{2} = I$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \text{ interchanges rows or colums}$$
$$M^{3} = M^{-1} = (p-1) \cdot E \cdot M = (p-1) \cdot M \cdot E$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 11 of 43

CISS 2008 Eigenvectors of M

$$M \cdot (I + M + M^{2} + M^{3}) = + (I + M + M^{2} + M^{3}), \ \lambda = +1$$

$$M \cdot (I - M + M^{2} - M^{3}) = - (I - M + M^{2} - M^{3}), \ \lambda = -1$$

$$M \cdot (I - j \cdot M - M^{2} + j \cdot M^{3}) = + j \cdot (I - j \cdot M - M^{2} + j \cdot M^{3}), \ \lambda = +j$$

$$M \cdot (I + j \cdot M - M^{2} - j \cdot M^{3}) = -j \cdot (I + j \cdot M - M^{2} - j \cdot M^{3}), \ \lambda = -j$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 12 of 43

OS ABOINTY NEER INFORM

The Lempel-Golomb Generators

- Form of the Lempel and Golomb generators $\alpha^{p_i} + (\alpha^k)^i = 1, \ 1 \le i \le q-2$
- Lempel when k=1, Golomb when k>1
- Lempel Costas arrays are symmetrical

$$\lambda_{i} \begin{cases} =+1, \ i = 0 \\ =-1, \ i = k \\ = 0 \text{ otherwise} \end{cases}, \ gp_{i} \begin{cases} =0, \ i = 0 \\ =p_{i-1}, \ i > 0 \end{cases}$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 13 of 43

CISS 2008 The Welch Generator

- Form of the Welch generator $\alpha^{i+r} = (p_i + 1) \cdot \alpha^0, \ 0 \le i \le q - 1$
- Produces Costas arrays of order p-1

$$\lambda_i \begin{cases} =+1, \ i=1 \\ =0 \text{ otherwise} \end{cases}, \ wp_i = (p_i + 1) \cdot \alpha^{-r}$$

 Offset r is arbitrary; these Costas arrays are singly periodic

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

These Examples Raise Questions

- Classical generators produce trivially simple generator vectors
- The generalizations by Taylor, Rickard, and Beard are generalizations of these
- Is there a fundamental relationship that produces Costas arrays from simple generator vectors?
- What about non-generated Costas arrays?
- How do we find other generator vectors?

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

The Difference Triangle

- Description
 - Top row is column indices of a permutation
 - Successive rows are differences between indices in the top row
- This is our algebraic link between the Costas condition and Costas arrays
 - A base for backtrack programming searches
 - A way to check permutations for the Costas condition
- Pose the difference triangle in terms of generator polynomials

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 16 of 43

CISS 2008 Definition: Difference Triangle

• Elements

$$d_{i,j} \begin{cases} = p_j, \ i = 0 \\ = p_j - p_{j+i}, \ i > 0 \end{cases}$$

• Example

Costas array:24031Difference 1:-24-32Difference 2:21-1Difference 3:-13Difference 4:1

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

The Value of the Difference Triangle

- Sequence is a permutation if
 - The elements of the first row are all between zero and N-1
 - None of the differences are zero
- Sequence is a Costas array if
 - There are no duplications in any difference row
 - Note that row *N-1* has only one element and thus is not relevant to the Costas condition

The Difference Triangle in GF(q)

• Pose each row of the generator equation Generator Equation: $M \cdot \underline{l} = gp$

Row i: \underline{rm}_{i}^{T}

$$\underline{m}_i^T \cdot \underline{l} = gp_i = \alpha^p$$

- Each element p_i of the top row of the difference triangle is replaced by $\alpha^{(p_i)}$
- Difference rows become quotient rows
- Every element in the new difference triangle is α to the power of the corresponding element in the old difference triangle

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Elements of The Difference Triangle in GF(q)

• Equation for the elements

$$gd_{i,j} \begin{cases} = gp_j = \underline{rm}_j^T \cdot \underline{l} = \alpha^{p_j}, \ i = 0 \\ = \frac{\underline{rm}_j^T \cdot \underline{l}}{\underline{rm}_{j+i}^T \cdot \underline{l}} = \alpha^{p_j - p_{j+i}} = \alpha^{d_{i,j}}, \ 0 < i < N - j - 1 \end{cases}$$

• The number of difference elements is

$$\binom{N}{2} = \frac{N \cdot (N-1)}{2}$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 20 of 43

Conditions for Permutation in GF(q)

- Top row may have no zeros
- None of the ratios in the difference rows may be the unity element

$$\frac{\underline{rm}_{j}^{T} \cdot \underline{l}}{\underline{rm}_{j+i}^{T} \cdot \underline{l}} \neq 1, \ i > 0$$

• Preferred form for defining spaces

$$\left(\underline{rm}_{j}-\underline{rm}_{j+i}\right)^{T}\cdot\underline{l}\neq0$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 21 of 43

CISS 2008 Costas Condition

No duplications

$$\frac{\underline{rm}_{j}^{T} \cdot \underline{l}}{\underline{rm}_{j+i}^{T} \cdot \underline{l}} \neq \frac{\underline{rm}_{j+k}^{T} \cdot \underline{l}}{\underline{rm}_{j+i+k}^{T} \cdot \underline{l}}, \ i, k > 0$$

- Clearing the denominators $\left(\underline{rm}_{j}^{T} \cdot \underline{l}\right) \cdot \left(\underline{rm}_{j+i+k}^{T} \cdot \underline{l}\right) \neq \left(\underline{rm}_{j+i}^{T} \cdot \underline{l}\right) \cdot \left(\underline{rm}_{j+k}^{T} \cdot \underline{l}\right)$
- Preferred form for defining spaces

$$\underline{l}^{T} \cdot \left(\underline{rm}_{j}^{T} \cdot \underline{rm}_{j+i+k} - \underline{rm}_{j+i} \cdot \underline{rm}_{j+k}\right) \cdot \underline{l} \neq 0$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 22 of 43

CISS 2008 Number of Row Differences

- Row *i* has *N*-*i* entries
- For k entries, there are k(k-1)/2 differences
- Thus row i has (N-i) (N-i-1)/2 differences
- Thus the number of differences is

An Issue with the Costas Condition

• The Condition is $\left(\underline{rm}_{j}^{T} \cdot \underline{l}\right) \cdot \left(\underline{rm}_{j+i+k}^{T} \cdot \underline{l}\right) - \left(\underline{rm}_{j+i}^{T} \cdot \underline{l}\right) \cdot \left(\underline{rm}_{j+k}^{T} \cdot \underline{l}\right) \neq 0$ • Or

$$\alpha^{p_j} \cdot \alpha^{p_{j+i+k}} - \alpha^{p_{j+i}} \cdot \alpha^{p_{j+k}} = \alpha^{p_i + p_{j+k+i}} - \alpha^{p_{j+i} + p_{j+k}} \neq 0$$

• But exponentiation of any element is modulo *q*-1 so that this condition cannot be met unless

$$p_j + p_{j+k+k} - p_{j+i} - p_{j+k} \neq 0 \mod q - 1$$

• Or

$$q \ge 2N-3$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 24 of 43

CISS 2008 What Do De Do About *N*<*q*-2?

- The classical generators
 - In the Lempel-Golomb generator, we set the extra element of <u>gp</u> to zero
 - There was no extra element in the Welch generator
- Our alternatives
 - Use a rank N submatrix of M and thus a shorter <u>I</u>
 - Set the extra elements of <u>gp</u> to zero
 - Define the remaining elements of <u>gp</u> to an arbitrary scheme such as an identity matrix

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 25 of 43

Identity Matrix for the Extra Elements

- Add an identity matrix of order *q*-*N*-2 as the lower right submatrix
- An additional constraint on *I* is

$$M_{N,q-2} \cdot \underline{l} = \underline{ls}_{N,q-2}$$

• Base vector <u>I</u> determining this submatrix is

$$\underline{l}_0 = M_{N,q-2}^{\#} \cdot \underline{ls}_{N,q-2}$$

$$M_{N,q-2}^{\#} = M_{N,q-2}^{T} \cdot \left[M_{N,q-2} \cdot M_{N,q-2}^{T} \right]^{-1}$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 26 of 43

OS ABOINTY NOLL

Definition of the Matrix and Vector

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 27 of 43

CISS 2008 Using the Conditions in *GF(q)*

- The permutation and Costas conditions
 - Constrain the space of <u>I</u>
 - May be used as a basis to define a restricted space for <u>I</u>
- This restricted space may be used to define a search of low complexity
- If the space can be shown to be null for a particular order, then this proves that there are no Costas arrays of that order

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 28 of 43

CISS 2008 Condition on <u>/</u> When N<q-1

 $M_{N,q-2}\cdot \left(\underline{l}-\underline{l}_0\right)=\underline{0}$

- Rank of this condition is q-N-1
- Call the vector space spanned by $M_{N,q-2} S_0$
- The vector $\underline{I}-\underline{I}_0$ cannot be in S_0
- The vector <u>I</u>₀ is zero if the extra elements of <u>Is</u> are set to zero
- The issue goes away when a submatrix of M is used – extra elements of <u>I</u> are zero

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Permutation Constraints in GF(q)

- The permutation condition is $\left(\underline{rm}_{j} - \underline{rm}_{j+i}\right)^{T} \cdot \underline{l} \neq 0, \ i > 0$
- The total constraint can be found by finding the intersection of each of these rank *N*-1 spaces
 - Call the rank 1 complement of each space: SP_{i,i}
 - Find the union SPU of these vector spaces
 - The vector <u>I</u> must be in the complement that space \SPU
- The space \SPU can have a rank of up to N-1

CISS 2008 Costas Condition in *GF(q)*

• The Costas condition

$$\underline{l}^{T} \cdot \left(\underline{rm}_{j}^{T} \cdot \underline{rm}_{j+i+k} - \underline{rm}_{j+i} \cdot \underline{rm}_{j+k}\right) \cdot \underline{l} \neq 0, \ i, k > 0$$

- The vector <u>I</u> must be in the rank 2 space of each matrix in parenthesis
- The allowable space of <u>/</u> is the complement of the intersection of the complements all these rank 2 spaces
 - Complement the space of each constraint; call this rank N-2 space SC_{i,l,k}
 - Find the union of these rank 2 spaces; call this space SCU
 - The vector <u>I</u> must be in the complement of this space \SCU
- This space will have a rank of zero, one or two

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 31 of 43

CISS 2008 Finding the Space of <u>I</u>

- Find the complement of the allowed vector space of <u>I</u> as $SF = S_0 \bigcup SPU \bigcup SCU$
- The vector space of <u>/</u> is the complement of this space

$$\underline{l} \in \backslash SF$$

- Definitions of the Spaces
- $S_{0}: \qquad \underline{l} \notin M_{N,q-2} \cdot (\underline{l} \underline{l}_{o}) \neq 0$ $SPU: \qquad \underline{l} \notin (\underline{rm}_{j} - \underline{rm}_{j+i})^{T} \cdot \underline{l} = 0, \quad i > 0$ $SCU: \quad \underline{l} \notin \underline{l}^{T} \cdot (\underline{rm}_{j} \cdot \underline{rm}_{j+i+k} - \underline{rm}_{j+i} \cdot \underline{rm}_{j+k}) \cdot \underline{l} = 0, \quad i,k > 0$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 32 of 43

- Method suggested by the definitions of the spaces
 - Construct unions by concatenating columns of vectors that span the null spaces of <u>I</u>
 - Use Gram-Schmidt orthogonalization to find the rank
 - Use the orthogonal vectors to construct a matrix that spans the complement of the space
- The rank of the space of <u>/</u> will be zero, one or two
- If the rank is zero there are no Costas arrays of order N
- If the rank is one or two then any linear combination will generate Costas arrays

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Self-Annihilating Vectors in GF(q)

- The dot product of a nonzero vector with itself may be zero
- Example

Г

0 Γ

$$\underline{x} = \begin{bmatrix} \gamma^{\circ} \\ \gamma^{1} \\ \gamma^{2} \\ \vdots \\ \gamma^{q-1} \end{bmatrix}, \quad \left(\underline{x}^{T} \cdot \underline{x} \right) = \sum_{i=0}^{q-2} \gamma^{2i} \begin{cases} = \frac{1 - \gamma^{2q-1}}{1 - \gamma^{2}}, \quad \gamma^{2} \neq 1 \\ = 0, \quad \gamma^{2} = 1 \end{cases}$$

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Slide 34 of 43

Dealing with Self-Annihilating Vectors

- They occur often in our work
 - All but two rows of M are self-annihilating
 - All <u>gp</u> corresponding to permutations are self-annihilating
- Orthogonalization won't work with self-annihilating vectors
 - Solution: Handle them in pairs
 - If two vectors aren't orthogonal, replace them in the matrix with their sum and difference
 - The new vectors won't be self-annihilating and will span the same space

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 35 of 43

CISS 2008 Limitations of Linear Algebra

- Definition of the permutation condition space $\left(\underline{rm}_{j} - \underline{rm}_{j+i}\right)^{T} \cdot \underline{l} = 0, \ i > 0$
- Definition of the Costas condition space

$$\underline{l}^{T} \cdot \left(\underline{rm}_{j} \cdot \underline{rm}_{j+i+k} - \underline{rm}_{j+i} \cdot \underline{rm}_{j+k}\right) \cdot \underline{l} = 0, \ i, k > 0$$

- The nature of these equations is Diophantine
 - The concept of magnitude isn't there in GF(q)
 - Only discrete values are allowed, ergo Diophantine equation concepts apply

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Lessons Learned

- Note nature of constraints in terms of linear algebra principles
 - Permutation null space is rank 1, union over j,i is rank 1 to full rank; intuition tells us that it is low rank
 - Costas condition null space is rank 2, union over *j*,*i*,*k* is rank to to full rank; intuition tells us that it is high rank for larger N
- Tests in *GF(q)* contradict these interpretations
 - Posing the 56 Costas arrays of order 26 as <u>gp</u> in GF(q), q=67, 71 and others and concatenating them as columns in order 26 matrices produces rank 25 or 26 matrices, not rank 0, 1 or 2 matrices
 - Q-R decomposition of Costas condition matrices in *GF(q)* produces vector spaces that do not conform to the original condition
- Odd observation: upper limit on C(N) of N² holds except for orders 5-23, holds exactly for order 256; this hints at a rank 2 generator!
- Conditions in *GF(q)* verified for known Costas arrays, but linear algebra derived results don't always check out the way they would in real or complex fields

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 37 of 43

- Find new ways to describe the spaces
 - Defined by the permutation condition
 - Defined by the Costas condition
 - Use wp_i instead of gp_i
- Find the union or intersection of the sets of the individual conditions
 - Linear algebra concepts led to focus on unions of sets
 - Diophantine concepts may lead to use of intersections of sets
- Examine the conditions as Diophantine equations

March 21, 2008, 2:15 PM

CISS 2008 Summary

- We found simple linear algebraic equations in GF(q) for permutation and Costas conditions
 - Produced from difference triangle
 - Conditions found for validity, e.g. q>2N-3
 - Our equations are linear and quadratic
- Limitations on linear algebra concepts
 - Self-annihilating vectors common
 - Inverse and Q-R decomposition defined, SVD not defined
 - Some equations simply Diophantine in defining spaces

Other Related Work

- Database from CISS 2006 extended to order 400
 - Too large for single-sided data DVD: 6.9 GB
 - Available as 2.2 GB Zip archive on http://jameskbeard.com
 - Fit to cumulative curve, orders 200-400: 0.92143 (Order)^{2.5253}
- All-new interface
 - Designed to be run from HD for database on CD-ROM or HD (see below for screen shot)
 - Outputs CSV files for direct use by Matlab, Excel, C...
- Search over order 27
 - Not yet complete
 - We believe that the 196 Costas arrays of order 127 on the CISS 2006 database are all of them

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 40 of 43

Cumulative Distribution

Database Interface Screen Shot

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	Order	All	Essential	Symmetrical	G-Symmetrical
	22	2052	259	5	220
	25	88	12	2	0
Current order:	26	56	8	2	0
	27	196	28	7	0
	28	712	89	0	336
No. Value, Desc 1 F, T => 2 2 26, Order 3 F, T => 2	ription all CAs to of CAs fo filter by	o order 26; F or output generator me	=> generated	l CAs to orde: itput all	r 400
No. Value, Desc 1 F, T => 2 26, Order 3 F, T => 4 0, If project 5 1, 1 => 6 0, 0 => 7 REWIND, APPEN:	ription all CAs to of CAs fo filter by evious opt All, 2 => Output CAs D => appen	o order 26; F or output generator me ion is T, fi Essential, 3 are row ind d to existing	=> generated thod; F => ou lter by gener => Symmetric ices from 0 to g output file	d CAs to order itput all rator method f cal, 4 => G-S to N-1, 1 => f es; REWIND =>	r 400 1 to 19 ymmetrical from 1 to N overwrite

References

- Richard Bellman, *Introduction to Matrix Analysis*, Second Edition, SIAM Classics Series, ISBN 0-89871-399-4, p. 193 and 359-360.
- Solomon W. Golomb and Herbert Taylor, "Constructions and Properties of Costas Arrays," *Proceedings of the IEEE* 72, 9 (September 1984) 1143-2263.
- J. K. Beard, J. C. Russo, K. Erickson, M. Monteleone, and M. Wright, Costas Array Generation and Search Methodology, *IEEE Transactions on Aerospace and Electronic Systems*, 43, 2 (April 2007), 522-538.
- J. K. Beard, Generating Costas Arrays to Order 200, *Conference* on Information Sciences and Systems (CISS) 2006, March 23, 2006, paper number 178, Princeton University.
- S. W. Golomb and G. Gong, The Status of Costas Arrays, *IEEE Trans. On Information Theory*, **53**, 11 (November 2007), 4260-4265.
- Jon Russo, Personal Communication.

March 21, 2008, 2:15 PM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 43 of 43