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Abstract—Permutations of order N are generated using 

polynomials in a Galois field GF(q) where q > N+1, which can be 
written as a linear transformation on a vector of polynomial 
coefficients.  The Lempel and Golomb methods for generating 
Costas arrays of order q-2 are shown to be very simple examples.  
The generating polynomial for Costas arrays is examined to form 
an existence theorem for Costas arrays and a search of 
polynomial complexity for any given order.  Related work is a 
database on Costas arrays to order 400 and status of an 
exhaustive search for Costas arrays of order 27.  

I. INTRODUCTION 
OSTAS arrays are special cases of permutation arrays 
originally developed as frequency-hop schemes that 

optimized the usefulness of sonar waveforms, and are now 
used as components in high-performance radar and 
communications waveforms [1].  Costas arrays are often 
characterized as transformations on an identity matrix in 
which columns are interchanged, resulting in a sparse matrix 
of ones and zeros.  If a column vector consisting of a sequence 
of integers { }0,1,2 1N −…  is left-multiplied by such a matrix, 

the resulting vector { }0 1 2 1, , , Np p p p −…  is the sequence of integers 

representing this permutation.  Each number in the sequence is 
the column index where the one appears in each row in 
sequence, so expressing a permutation or Costas array in this 
format is called column index notation. 

II. POLYNOMIALS FITS IN FINITE FIELDS 

A. Problem Statement 
A permutation of order N  where 1N q≤ −  may be 

characterized as a linear transformation in a finite field or 
Galois field of order q  that is a prime or a power of a prime, 
denoted as ( )GF q .  The integers ip  are powers of a 

particular primitive element α , thus representing positions of 
ones in a row of a permutation matrix, and a sequence of such 
quantities is generated by a polynomial of order 1N −  in 

( )GF q , 
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where all quantities in (2.1) are in ( )GF q .  If we take the 

independent variable x  and the sum xφ  to be given powers of 
a primitive element in ( )GF q , α , we have the form 
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where the jp  are an arbitrary set of N  integers, all in the 

range from one to N  with no duplications.  Matrix notation 
for this equation is 

 LGM l gp⋅ =  (2.3) 

where the matrix LGM  and the vectors l  and p  are 
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We see from Eq. (2.3) that any permutation p  has a one-to-

one correspondence with a set of polynomial coefficients l  if 
the matrix LGM  is nonsingular.  The matrix LGM  is a 
Vandermonde matrix [2], and has determinant  
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which is a polynomial valid in ( )GF q  that is nonzero when 

α  is a primitive element and 
 1N q≤ − . (2.6) 

B. Computing the Generating Polynomial 
The inverse of a Vandermonde matrix can be written as 

simple equations in the field of real numbers, avoiding or 
minimizing the usual problem of ill conditioning seen in 
Vandermonde matrices [2].  However, that result is not 
directly applicable to finite fields because it involves posing 
the polynomials with non-integer coefficients, which have 
little or no meaning in finite fields.  Direct methods such as 
Gauss-Jordan elimination provide efficient computation of 
inverses of matrices in finite fields.  Thus for any permutation 
gp  we can easily find a set of polynomial coefficients l  by 

 1
LGl M gp−= ⋅ . (2.7) 
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C. The Lempel and Golomb Generators 
The polynomial l  has very simple form for permutations 

that are Costas arrays generated by the Lempel, Golomb, and 
Welch generators [3].  The simplest permutation is the 
identity, which we use here as a first example.  In this case, 
the polynomial coefficients are 

 1, 1
Identity:

0, 1i

i
i

λ
= =⎧

⎨= ≠⎩
 (2.8) 

Costas arrays of order 2q −  are generated by means of the 
Lempel generator [3], 
 { }Lempel: 1, 1... 2ipi i qα α+ = ∈ − . (2.9) 

For the Lempel generator, the polynomial coefficients are 
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Lempel: 1, 1
0, 1
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The Golomb generator is given by [3], 
 { }Golomb: 1, 1... 2ipg i i qα β+ = ∈ −  (2.11) 

where β  is also a primitive element that is distinct from α .  
The polynomial is given by 

 
1, 0

Golomb: 1,
0 otherwise
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, (2.12) 

i.e. the -1 is in another position. 
The Welch generator can be used when q  is simply a prime 

and not a power of a prime, and ( )GF pr  is implemented as 

simple integer arithmetic modulo the prime pr .  The Welch 
generator produces Costas arrays of order 1pr −  and is [3] 

 { }Welch: 1 mod , 0, 2i r
ipw pr i prα ++ = ∈ −…  (2.13) 

where r  is an offset integer in the range zero to 1pr − ;  
Costas arrays that are produced by the Welch generator are 
periodic in r  and are thus singly periodic, but we will use 
zero offset in our illustrations here. 

The polynomial for the Welch generator is that given by 
Eq. (2.10) with the mapping 

 Welch: i
ipw α= . (2.14) 

These results are surprisingly simple in the light of the fact 
that each of the polynomial coefficients may be any element in 

( )GF q . 

III. THE DIFFERENCE TRIANGLE 

A. Definition 
Costas arrays are often analyzed using a difference triangle 

[6], which offers a simple method to verify the Costas 
condition.  The top row is the column indices.  Numbering the 
rows and columns from 0  to 1N −  , row i  is the difference 
between the column index above it and the column index i  
columns over.  The element in row i , column j  is 
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 (3.1) 

 
An example for an order 5 Costas array is shown below as 

(3.2). 

 

Costas Array: 3 1 4 0 2
Difference 1: 2 3 4 2
Difference 2: 1 1 2
Difference 3: 3 1
Difference 4: 1

− −
−

−

 (3.2) 

B. Conditions for Permutation 
The top row is the column indices of a permutation if all its 

elements are between 0  and 1N −  inclusive, and none of 
them are repeated.  The condition that there are no zeros in the 
difference triangle below the top row is equivalent to the 
condition that no column indices be repeated.  

C. The Costas Condition 
The Costas condition is that the difference in rows and 

columns between a pair of ones in the permutation matrix not 
be repeated for any other pair of ones.  This is equivalent to 
requiring that there can be no duplicate entries in any row of 
the difference triangle. 

D. The Difference Triangle in ( )GF q  

We can pose the difference triangle in terms of elements of 
a Galois field as follows.  Replace the top row with the 
elements of the vector gp  as given in (2.4).  The elements of 

the other rows are given as ratios of elements in the top row 
rather than differences.  Thus each element in this new 
difference triangle is equal to α  taken to the power of the 
corresponding element of the integer difference triangle given 
in (3.2). 

IV. MAPPING THE DIFFERENCE TRIANGLE TO THE 
GENERATOR POLYNOMIAL 

A. The Notation and Mapping 
Equation (2.7) defines a relationship between polynomial 

coefficients and a sequence of column indices.  We know that 
( )GF q  exists only for q  equal to a prime or a power of a 

prime and we wish to address Costas arrays of any order.  In 
( )GF q , there is a zero element or additive identity, a one 

element or multiplicative identity, and for any element γ  
 qγ γ= . (4.1) 
When γ  is a primitive element of ( )GF q , the sequence of 

powers 0 to 2q −  of γ  do not repeat and all elements occur in 
the sequence except the zero element.  Thus the highest order 
of the matrix M  that is nonsingular is 1q −  and we can use 
this to define a permutation of the same order.  We define this 
equation as 
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 M l gp⋅ =  (4.2) 

where M  is 
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We use a row of (4.2) to define a mapping from igp  as 
given by a row of the definition in (2.4) to the polynomial 
vector l  and write it as 

 i Tp
iigp rm lα= = ⋅  (4.4) 

where irm  is row i  of the matrix M that we defined in (4.3).  
We now have a difference matrix of elements of ( )GF q , and 

its elements are defined from (3.1) by 
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B. Costas Arrays of Lesser Order 
Costas arrays of order 1N q< −  can be treated by using 

Vandermonde matrices of order less than 1q −  as we did in 
showing that the Lempel and Golomb generators were simple 
examples; the Costas array will be the first N  rows and 
columns of a 1 by 1q q− −  permutation matrix.  Here we 
consider 1N q< −  with the full 1 by 1q q− −  Vandermonde 
matrix.  The surplus elements are free degrees of freedom, and 
will be the last 1q N− −  rows and columns, which we will 
define as an identity matrix to constrain those extra degrees of 
freedom and uniquely define a 1 by 1q q− −  permutation 
matrix.  For these supplementary rows and columns we have 

 , 2T i
irm l N i qα⋅ = ≤ ≤ − . (4.6) 

We write (4.6) in matrix form as 
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or, defining notation for (4.7), 
 

, 2 , 2

i
N q N q

M l α− −
⎡ ⎤⋅ = ⎣ ⎦  (4.8) 

from which we have a basis constraining the extra degrees of 
freedom 

 #
0 , 2 , 2

i
N q N q

l M α− −
⎡ ⎤= ⋅ ⎣ ⎦  (4.9) 

where we are using the pseudoinverse for a matrix with more 
columns than rows, 

 1#
, 2 , 2 , 2 , 2

T T
N q N q N q N qM M M M

−

− − − −⎡ ⎤= ⋅ ⋅⎣ ⎦ . (4.10) 

We see that l  must satisfy 
 ( )0, 2 0N qM l l− ⋅ − = . (4.11) 

C.  Conditions for Permutation 
The requirement that the row indices be between zero and 
1q −  is ensured by the effective modulo 1q −  of the exponent 

as shown in (4.1).  The remaining condition for the sequence 
to be a permutation is that there are no ones in the new 
permutation matrix below the top row.  This means that 

 , 0T T
j j irm l rm l i+⋅ ≠ ⋅ > . (4.12) 

or, 
 ( ) 0

T

j j irm rm l+− ⋅ ≠ . (4.13) 

The number PermutationN  of conditions that must be met for 
no duplications in the sequence of column indices is 

 ( )1
2 2Permutation

N N N
N

⋅ −⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. (4.14) 

Note that (4.13) shows that for any permutation matrix, the 
vector l  is not orthogonal to the difference between any two 
rows of the matrix M  as defined by  

D. The Costas Condition 
The Costas condition is that no two values in any row of the 

difference matrix be duplicates, or, 

 , , 0
T T
j j k

T T
j i j k i

rm l rm l
i k

rm l rm l
+

+ + +

⋅ ⋅
≠ >

⋅ ⋅
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where k  is the number of columns between the two values of 

,i jgd  that are being compared.  Clearing the denominators in 

(4.15) gives us 
 ( ) ( ) ( ) ( )T T T T

j j k i j k j irm l rm l rm l rm l+ + + +⋅ ⋅ ⋅ ≠ ⋅ ⋅ ⋅ . (4.16) 

Moving the terms to the left hand side and factoring the 
vector l  from both vectors gives us the quadratic form and 
inequality 

 ( ) 0T T T
j j k i j k j il rm rm rm rm l+ + + +⋅ ⋅ − ⋅ ⋅ ≠ . (4.17) 

The matrix in the quadratic form in (4.17) is the difference 
between two vector outer products and thus is rank two.  For 
an order N  permutation, there will be 

 ( ) ( )1 2
3 6Costas

N N N N
N

⋅ − ⋅ −⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (4.18) 

conditions defined by (4.17). 

E. The Vector Space of the Generator Polynomial 
We define the vector space of l  from the three conditions 

that must be met for a generator vector to produce a Costas 
array: 

• The supplementary condition of (4.11) must apply 
when 1N q< − .  This condition requires that 

( )0l l−  be in the null space of the row vectors of 

, 2N qM − . 

• Equation (4.13) requires that the generator vector 
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l  not be in the null space of any vector in 
parenthesis for any allowable set of values of the 
subscripts. 

• The Costas condition of (4.17) is satisfied when 
the generator vector l  is not in the null space of 
the matrix of (4.17) for any allowable set of values 
of the subscripts. 

Two of many options to define the allowable space for l  
are the intersection of the allowable vector spaces for these 
three conditions and as the complement of the union of the 
prohibited vector spaces.  We select the latter option here, 
because matrices that span unions and complements of vector 
spaces are simple to construct from matrices that span these 
spaces.  The complement of the vector space of l  is the union 
of these vector spaces: 

• When 1N q< − , then (4.11) requires that 0l l−  
must not be in the space spanned by the rows of 

, 2N qM −  as given by (4.7) and (4.8).  Call this 

space 0S . 

• The permutation condition (4.13) requires that the 
generator vector l  not be orthogonal to the vector 
in parenthesis for any allowable combination of 
subscripts.  Call this space ,j iSP  and its union 

SPU . 
• The Costas condition of (4.17) requires that the 

generator vector l  not be in the null space of the 
matrix in parenthesis in for any allowable 
combination of subscripts.  Call this space 

, ,j i kSC  

and its union SCU . 
A summary of the conditions is that the generator vector l  

must be in the complement of the union of the right null 
spaces of the vectors in (4.13) and the null spaces of the 
matrices in (4.17).  When 1N q< −  then we have the 
additional condition that 0l l−  must be in the right null space 

of 
, 2N qM −⎡ ⎤⎣ ⎦ , so that the union of the null and the complement 

of this space to define the allowable space of l .  In equation 
form, this forbidden space is 

 
, , ,

, , ,
o j i j i k

j i j i k

SF S SP SC
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∪ ∪ ∪ ∪  (4.19) 

so that l  must satisfy 
 \l SF∈ . (4.20) 

V. A CONDITION FOR EXISTENCE 

A. Definition of the Condition for Existence 
A necessary and sufficient condition for existence of Costas 

arrays of order N  is that the space given in (4.20) have 
nonzero rank.  This is equivalent to the condition that a matrix 
of basis vectors spanning SF  must not be full rank.  Note that 

a necessary condition is that the strongest condition SCU  not 
span the space, and we show below that this condition alone is 
useful in constructing Costas arrays. 

B. Using the Condition for Existence 
The usual tool for finding, constructing, and 

complementing vector spaces spanned by available matrices is 
singular value decomposition (SVD).  SVD is not available in 

( )GF q  because square roots, magnitudes, non-integral 

multiples, and other operations not meaningful in ( )GF q  are 

needed to use classical methods to implement a SVD.  
However, Gram-Schmidt orthogonalization, complementary 
space constructions and other classical linear algebra concepts 
are relevant and defined in ( )GF q  that suffice for our 

purposes. 

C. Issues with Finite Fields in Linear Algebra 
A property of linear algebra of finite fields is that some 

vectors are self-annihilating; that is, the dot products of some 
vectors with themselves are the zero element, even though the 
vectors are not zero.  As an example, consider a vector whose 
elements are powers of a given element γ : 
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. (5.1) 

We see that the dot product of this vector with itself is 
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∑  (5.2) 

Here we define an integer multiplied by an element of 
( )GF q  as the element added to itself a number of times equal 

to the integer, 

 
1

k

i

k γ γ
=

⋅ ≡ ∑ . (5.3) 

A property that accrues to this definition is 
 ( )0 in kp GF pγ⋅ = . (5.4) 

Some consequences of (5.4) are that the second row on the 
right hand side of (5.2) is never zero, and every element of 

( )2kGF  is its own negative. 

Since the order of the powers of γ  in the summation of 
(5.2) is irrelevant to the value of the sum in (5.2), we see that 
all vectors gp  corresponding to permutations are self-

annihilating.  Also, the general form of (5.1) and (5.2) shows 
us that all but two of the rows (and columns) of M  as given 
by (4.3) are self-annihilating. 

VI. FINDING COSTAS ARRAYS 

A. Using the Costas Conditions 
The strongest condition is the Costas condition (4.17), 

because it constrains the rank of the vector space of l  to a 
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maximum of.  This is because the null space of l  is 2N −  for 
each combination of subscripts in (4.17), so that the maximum 
allowable rank CGR  of the vector space of l  is two, once 
(4.11) has been incorporated.  Call the vectors spanning this 
space 

 , 0 CGi
cg i R≤ < . (6.1) 

Then, any set of elements iγ  in ( )GF q  will generate a 

candidate Costas array generator vector l  by 

 
1

0

CGR

i i
i

l cg CGγ γ
−

=

= ⋅ = ⋅∑  (6.2) 

where the matrix CG  is the concatenation of the vectors 
i

cg  

as its columns.  Since all values in ( )GF q  are allowed in γ  

which has CGR  elements, then CGN  distinct values of γ  are 

possible, where 
 CGR

CGN q= . (6.3) 
We do not add the permutation conditions so each resulting 

sequence is then checked for validity as a Costas array.  
Clearly this search over polynomial space is preferable to 
searching over all possible values of the generator vector.  
When 1N q< −  but 1q N− −  is small, the rank of the 
candidate space can be as large as 1q N− +  but even this can 
be a practical solution when this rank remains small. 

Equation (6.3) puts an upper limit on the number of Costas 
arrays that may exist of order N .  Non-Costas arrays and 
even non-permutations and violations of (4.11) will, in 
general, occur so the actual count of separate Costas arrays of 
order N  will, in general, be smaller than CGN  as given by 
(6.3).  Also, Costas arrays come in sets of four or eight that 
are defined using transposition and rotation of any one 
permutation matrix, and (6.2) will generate all of them. 

VII. RESULTS AND CONCLUSIONS 

A. Some Results in ( )27GF  

All 56 Costas arrays of order 26 were analyzed using (4.2) 
to find the polynomial generating vector l  for each one.  The 
polynomial coefficients iλ  are elements in ( )27GF , and were 

converted to integers by finding ( )log iα λ  for output, with -99 

as a special case for the zero element.  Program output for 
these selected generator polynomials are shown in Figure 2.  
Visible patterns are seen for Costas arrays generated by the 
Taylor 1 method, which is Lempel-Golomb with a corner dot 
added, and Inhomogeneous Additive 1, which is a 
modification of the Lempel-Golomb method first reported in 
[4].  Note that all the vectors l  have a zero first element as 
expected, and that the vectors given, when a row of M  or its 
inverse is subtracted, yield a sparse vector. 

Of these 56 Costas arrays, 40 are found by the generators 
reported in [4] and [5] and 16 are two sets of eight 
polymormphs first reported in [4].  One of each set was found 

to be orthogonal to one in the other set; the generator 
polynomials for these are given at the end of Figure 2. 

This result supports out (6.2), in that all of them are seen to 
be the sums of a few simple vectors that can be derived from 
rows of M  or its inverse. 

B. Results from Other Costas Array Work 
1) Extension of Exhaustive List 

Earlier work reported on in CISS 2006 [5] provided an 
exhaustive list of 663,702 Costas arrays of orders 2 through 
200; this list is available as a CD-ROM from the author. 

Databases of Costas arrays to orders 300 and 400 are now 
available from the author.  The cumulative number of Costas 
arrays versus order is shown below as Figure 1.  The behavior 
of the curve for orders below 100 is dominated by the large 
numbers of Costas arrays below order 20 but a straight line on 
a log-log plot begins to emerge at higher orders.  A curve fit 
over the range 200 to 400 yields this fit: 

 ( ) 2.52530.9214 OrderCAN Order ⋅∼  (7.1) 

The database of orders 2 through 200 has 633,702 Costas 
arrays.  Extending to order 300 produces a database of 
1,640,542 Costas arrays, and extending to order 400 produces 
a database of 3,609,550 Costas arrays.  The database for 
orders to 400 is 7,438,337,014 bytes, which is too large for 
any convenient media other than 8 GB or larger portable flash 
memory or hard drives, or a double-sided DVD.  It is 
available as a 139 MB compressed archive on 
http://jameskbeard.com. 

The data extraction routine is all new, with a simple 
interactive one-screen user interface, with a few advanced 
options available as separate screens. 

1

10
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10000000

1 10 100 1000
 

Figure 1.  Cumulative Number of Costas Arrays vs. Order 

C. Work on Exhaustive Search over Order 27 
The present author, with a team of four others, has 

performed exhaustive searches for Costas arrays of orders 24, 
25, and 26 [4], and are performing an exhaustive search over 
order 27.  We are just under 50% done as of this writing.  Our 
sampling scheme in the column index notation space indicates 
that there are no likely spurious Costas arrays of order 27, and 
our tentative estimate of the total number of Costas arrays of 

http://jameskbeard.com
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order 27 is 196, the number produced by the generator 
program reported on in CISS 2006 [5]. 

D. Conclusions 
The theory of linear algebra over finite fields provides a 

link to the classical Costas array generators by Welch, 
Lempel, and Golomb and a basis for extending the theory of 
Costas arrays to existence theorems and other new principles.  
One major result is a method for showing whether or not 
Costas arrays exist for a given order.  Entirely new focused 
searches are provided, based on linear algebra in finite fields, 
which are of polynomial complexity. 
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Figure 2.  Polynomial Coefficients for Selected Costas 
Arrays Shown as ( )log iα λ  

Costas array methods: Taylor 1, Cols Reversed, Transposed 
  -99   13    0   13   13   13   13  -99   13    0   13   13   13   13  -99   13   13   13   13   13   13    0   13   13   13   13 
Costas array methods: Taylor 1 
  -99   14   15   16  -99   18   19   20    8   22   23   24   25    0    1  -99    3    4    5   19    7    8    9   23   11   12 
Costas array methods: Inhom. A 1, Cols Reversed 
  -99    3   18  -99    9   24  -99   15    4  -99   21   10  -99    1   16  -99    7   22  -99   13    2  -99   19    8  -99   25 
Costas array methods: Taylor 1, Rows Reversed, Cols Reversed, Transposed 
  -99   14   15   16   17    5   19   20   21   22   23   24  -99    0    1    2    3   17    5  -99    7    8    9   10   24   12 
Costas array methods: Inhom. A 1, Rows Reversed, Cols Reversed 
  -99    0  -99   11   23  -99    8   20  -99    5   17  -99    2   14  -99   25   11  -99   22    8  -99   19    5  -99   16    2 
Costas array methods: Inhom. A 1, Rows Reversed 
  -99   10    9    8    7    6    5    4    3    2    1    0   25   24   23   22   21   20   19   18   17   16   15   14   13   25 
Costas array methods: Taylor 1, Rows Reversed, Transposed 
  -99   13   14   15  -99    4   18   19   20    8   22   23   24   25    0  -99    2    3    4    5   19    7    8    9   10   11 
Costas array methods: Inhom. A 1 
  -99    0   15   17   19   21   23   25    1    3    5    7    9   11   13   15   17   19   21   23   25    1    3    5    7    9 
Costas array methods: Taylor 1, Cols Reversed 
  -99   13   14    2   16  -99   18   19   20   21  -99   23   24   25    0    1    2    3    4   18    6    7    8    9   23   11 
Costas array methods: Taylor 1, Transposed 
  -99   12   12   12   12   12   25   12   12   12   12  -99   12   12   12   12   12   25   12   12   12   25  -99   12   12   12 
Costas array methods: Taylor 1, Rows Reversed, Cols Reversed 
  -99   12   25   12   12   12   12   25   12   12   12   12   12   12   12   12  -99   12   12   12   12  -99   12   25   12   12 
ORTHOGONAL PAIR 
Costas array polynomial coefficients,  2  zeros 
  -99   24    2    7   24   16    5   19   10   13   22  -99    3    9   11    3    5   23    7   15    6    8   18   24   15    9 
 Costas array polynomial coefficients,  3  zeros 
  -99  -99    6   10   15   14   23    0   17    9   25   16    0    5    9    4    9    8   20    6    7   11   15   22  -99    3 
ORTHOGONAL PAIR 
 Costas array polynomial coefficients,  2  zeros 
  -99   10   17    1   22   13   12   22   15    6   15   14   23   22   17  -99   12    4    2   12   25   11   20    4    0   23 
 Costas array polynomial coefficients,  3  zeros 
  -99    4  -99   25   19   16   13   13    2   17   19   15   21   18   14    5   15    0    9   19   17    9   11    7    4  -99 


