CISS ${ }^{2010}$ technique that maximizes Costas array search backtrack and symmetry exploitation

James K Beard
Life Senior Member, IEEE
jkbeard@ieee.org

The Last Costas Array

- Costas array of order 27
- Here it is

| 11 | 10 | 4 | 24 | 7 | 23 | 3 | 18 | 21 | 9 | 26 | 16 | 5 | 1 | 15 | 27 | 2 | 25 | 17 | 22 | 19 | 6 | 8 | 12 | 20 | 13 | 14 |
| ---: |
| 12 | 17 | 10 | 24 | 22 | 8 | 19 | 3 | 7 | 20 | 9 | 16 | 13 | 1 | 2 | 4 | 27 | 26 | 18 | 5 | 23 | 6 | 15 | 25 | 21 | 11 | 14 |
| 14 | 11 | 21 | 25 | 15 | 6 | 23 | 5 | 18 | 26 | 27 | 4 | 2 | 1 | 13 | 16 | 9 | 20 | 7 | 3 | 19 | 8 | 22 | 24 | 10 | 17 | 12 |
| 14 | 13 | 20 | 12 | 8 | 6 | 19 | 22 | 17 | 25 | 2 | 27 | 15 | 1 | 5 | 16 | 26 | 9 | 21 | 18 | 3 | 23 | 7 | 24 | 4 | 10 | 11 |
| 14 | 15 | 8 | 16 | 20 | 22 | 9 | 6 | 11 | 3 | 26 | 1 | 13 | 27 | 23 | 12 | 2 | 19 | 7 | 10 | 25 | 5 | 21 | 4 | 24 | 18 | 17 |
| 14 | 17 | 7 | 3 | 13 | 22 | 5 | 23 | 10 | 2 | 1 | 24 | 26 | 27 | 15 | 12 | 19 | 8 | 21 | 25 | 9 | 20 | 6 | 4 | 18 | 11 | 16 |
| 16 | 11 | 18 | 4 | 6 | 20 | 9 | 25 | 21 | 8 | 19 | 12 | 15 | 27 | 26 | 24 | 1 | 2 | 10 | 23 | 5 | 22 | 13 | 3 | 7 | 17 | 14 |
| 17 | 18 | 24 | 4 | 21 | 5 | 25 | 10 | 7 | 19 | 2 | 12 | 23 | 27 | 13 | 1 | 26 | 3 | 11 | 6 | 9 | 22 | 20 | 16 | 8 | 15 | 14 |

Properties of Finite Fields

- Finite fields of order q, denoted by $G F(q)$
- Any implementation of $G F(q)$ is isometric to all other implementations
- $G F(q)$ exists when $q=p^{k}, p$ a prime, $k>0$
- Commutative and associative addition, subtraction, multiplication, division
- In every $G F(q)$ there is a zero and a one
- Every element x has the properties $x^{q}=x$ and $p \cdot x=0$
- Other than zero and one, magnitude is not a meaningful concept
- There exist $\Phi(q-1)$ primitive elements α_{i}
- Where $\Phi(q-1)$ is the Euler totient function
- Powers of each α_{i} cycle through all the nonzero elements

The Vandermonde Matrix

$$
M_{N-1}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^{2} & \cdots & \alpha^{N-1} \\
1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{2 \cdot(N-1)} \\
\vdots & & & & \vdots \\
1 & \alpha^{N-1} & \alpha^{2 \cdot(N-1)} & \cdots & \alpha^{(N-1) \cdot(N-1)}
\end{array}\right]
$$

$$
\left|M_{N-1}\right|=\prod_{0 \leq i<j<N}\left(\alpha^{i}-\alpha^{j}\right) \neq 0, \quad N \leq q-1
$$

The Order q-1 Vandermonde Matrix

$$
M=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \alpha & \alpha^{2} & \cdots & \alpha^{q-2} \\
1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{2 \cdot(q-2)} \\
\vdots & & & & \vdots \\
1 & \alpha^{q-2} & \alpha^{2 \cdot(q-2)} & \cdots & \alpha^{(q-2) \cdot(q-2)}
\end{array}\right]
$$

$$
|M|=\prod_{0 \leq i<j<q}\left(\alpha^{i}-\alpha^{j}\right) \neq 0
$$

Generating Polynomials for a Golomb-Generated CA

0	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	-99	5	-99	-99	-99	-99	-99	-99	-99
9	11	0	2	0	23	18	6	11	16	9	15	17	6	5	29	17	-99	19	7	24	8	3	24	1	24	20
7	10	4	1	31	34	26	0	35	33	8	0	31	25	20	17	3	17	20	35	5	6	0	30	9	27	29
	Row 10,37																									
17	0	16	10	23	1	8	6	8	26	28	7	8	38	0	7	0	4	10	38	6	6	21	15	15	7	33

- Table entries are "log to the base alpha"
- Alpha is the principal element "x"
- Alpha taken to the power of the table entry equals the polynomial coefficient
- -99 is placeholder for zero
- Polynomial in GF(N+2) is the Golomb generator
- Other polynomials seem unremarkable

Generating Polynomials for the Last Costas Array

GF(29)

23	14	2	23	11	24	13	7	4	-99	27	19	3	14	13	22	17	17	9	23	24	4	26	17	23	4	24
14	6	18	7	21	21	-99	7	22	9	10	3	0	-99	8	23	10	0	20	19	7	26	1	2	13	8	3
16	20	-99	2	15	15	16	-99	16	24	10	10	13	2	15	6	14	13	5	6	8	8	13	21	7	15	24
16	0	5	18	4	1	7	9	9	10	17	15	5	0	14	8	23	12	2	18	26	25	9	2	11	7	2
14	3	20	25	8	20	27	9	22	27	18	27	15	3	3	19	24	27	27	20	11	8	4	17	18	2	19
0	7	19	18	27	1	21	17	5	9	14	22	9	3	0	26	12	18	0	0	21	24	14	9	-99	-99	-99
8	14	26	21	0	3	0	21	9	24	21	23	26	3	20	22	0	24	5	26	2	5	8	18	23	9	7
8	17	20	17	4	5	0	27	6	24	9	5	8	20	7	25	18	6	14	1	0	-99	12	15	3	25	8

GF(31)

| 4 | 3 | 18 | 1 | 28 | 28 | 2 | 20 | 7 | 18 | -99 | 15 | 1 | 27 | 17 | 9 | 6 | 26 | -99 | 3 | 22 | 12 | 5 | 28 | 17 | 13 | 22 |
| ---: |
| 10 | 13 | 21 | 17 | 10 | 7 | 28 | 10 | 3 | 29 | 6 | 6 | 1 | 15 | 4 | 18 | 16 | 18 | 17 | 1 | 2 | 18 | 7 | 14 | 0 | 6 | 0 |
| 8 | 29 | 24 | 20 | 19 | 3 | 18 | 4 | 13 | 12 | 1 | 20 | 1 | 23 | 20 | -99 | 23 | 13 | 15 | 20 | 0 | 15 | 5 | 2 | 12 | 11 | 10 |
| 24 | 21 | 6 | 6 | 23 | 8 | 13 | 0 | -99 | 16 | 25 | 11 | 0 | 27 | 28 | 10 | 16 | 22 | 11 | 5 | 2 | 21 | 4 | 0 | 20 | 23 | 24 |
| 0 | 29 | 11 | 7 | 22 | 22 | 25 | 25 | 20 | 21 | 28 | 4 | 4 | 27 | 25 | 29 | 9 | 2 | 16 | 22 | 20 | -99 | 1 | 14 | 26 | 26 | 14 |
| 15 | 29 | 23 | 12 | 5 | 15 | -99 | 13 | 3 | 20 | 16 | 9 | 29 | 8 | 29 | 22 | 18 | 24 | -99 | 13 | 23 | 29 | 12 | 22 | 28 | 29 | 7 |
| 23 | 17 | 4 | 26 | 29 | 22 | -99 | 8 | 1 | 11 | 9 | 1 | 25 | 18 | 0 | 19 | 0 | 29 | 17 | 5 | 0 | 8 | 1 | 15 | 11 | 3 | 2 |
| 1 | 6 | 19 | 15 | 20 | 22 | 27 | 21 | 8 | 28 | 17 | 24 | 5 | 28 | 8 | 18 | 10 | 12 | 25 | 23 | 21 | 6 | 24 | 11 | 9 | 25 | 25 |

Other Methods

- Augmentation
- Construct augmented matrix from two Costas arrays
- Result must satisfy Costas condition
- Interaction between matrices will almost always result in a violation of the Costas condition
- Interleaving
- Two Costas arrays with orders differing by at most one
- Construct checkerboard interleaved matrix

Augmentation Results

- Operated on database of all known Costas arrays up to order 400
- No success in interleaving equal order Costas arrays
- No success in augmenting 2X2 or 3X3 other than known Taylor/Golomb extensions and one example

Database Extended

- Generated Costas arrays to order 500
- Available on web site by Monday
- http://jameskbeard.com
- Updated user interface program

Screen Shot

	Order	All	Essential	Symmetrical	G-Symmetrical
	22	2052	259	5	220
	26	56	8	2	0
Current order:	27	204	29	7	0
	*****	*****	*****	*****	*****
	*****	*****	*****	*****	*****
	*****	*****	*****	*****	*****

Current options:
No. Value, Description
T, T => all CAs to order 27; F => generated CAs to order 500
27, Order of CAs for output
F, T => filter by generator method; F => output all
0 , If previous option is T , filter by generator method 1 to 19
1, 1 => All, 2 => Essential, 3 => Symmetrical, 4 => G-Symmetrical
0,0 => Output CAs are row indices from 0 to $N-1,1$ from 1 to N
REWIND, APPEND => append to existing output files; REWIND => overwrite
T, $\mathrm{T}=>$ Find generating polynomial in a Galois field.
9 49, Order of Galois field.
10 C:\Data\IEEE\Papers\CISS\CISS2006\CDROM_Image
, Database folder
11 . \Costas_Array_Database_Output.txt, Pathname for output text
Enter option 1-11 to change, 12 for HELP, or 0 to proceed:

Screen Shot

	Order	All	Essential	Symmetrical	G-Symmetrical
	448	172032	21504	0	86016
	455	21312	2700	72	0
Current order:	456	131328	16416	0	65664
	458	276	35	1	0
	460	162024	20253	0	80960

Current options:
No. Value, Description
$1 \quad \mathrm{~F}, \mathrm{~T}=>$ all CAs to order 27; F => generated CAs to order 500
2 456, Order of CAs for output
3 F, T => filter by generator method; F => output all
40 0, If previous option is T, filter by generator method 1 to 19
$5 \quad 1,1$ All, 2 E> Essential, 3 => Symmetrical, 4 => G-Symmetrical
$6 \quad 0,0=>$ Output CAs are row indices from 0 to $N-1,1$ from 1 to N
7 REWIND, APPEND => append to existing output files; REWIND => overwrite
8 T, T => Find generating polynomial in a Galois field.
9 49, Order of Galois field.
10 C: \Data\IEEE\Papers\CISS\CISS2006\CDROM_Image
, Database folder 11 . \Costas_Array_Database_Output.txt, Pathname for output text

Enter option 1-11 to change, 12 for HELP, or 0 to proceed:

Cumulative Totals versus Order

Conjecture Probably FALSE

- The number of Costas arrays of any given order $N>23$ does not exceed N^{2}. [FALSE]
- Costas arrays of order 556
- Total of 306,912
- 383,684 essential Costas arrays
- No symmetrical Costas arrays
- 153,456 G-symmetrical Costas arrays, 38,364 of which are unique
- 556^{2} = 309,136; we have 99.3\%

Why It's Important

- A hard limit of N^{2} indicates that a universal generator of rank 2 may exist
- Work on linear algebra in Galois fields for CISS 2008 paper
- Promising
- The most powerful linear algebra tools are not available
- Self-annihilating vectors
- Square roots do not exist for odd powers of principal elements
- Holy Grail is definition of a rank 2 generator

Why It's Probably False

- Equality is reached in one known case
- There are 65536 Costas arrays of order 256
- None of them are symmetrical
- 32768 of them are G-symmetrical
- 8192 of them are unique G-symmetrical Costas arrays
- False for every order from 5 through 23
- Near-equality is reached multiple times
- $\mathrm{N}(28)=712$ or 91% of $28^{2}=784$
- $\mathrm{N}(46)=2044$ or 96.6% of $46^{2}=2116$
- See orders 58, 82, 106, 166, 178,226, 256(!), 358, 556
- Presently running generators over range 501-600
- Orders 256 and 556 strongly indicate that the conjecture is probably false

Final Resolution is Near

- Two ways to resolve this conjecture
- Mathematical proof of the existence of a rank 2 generator of all potential Costas arrays
- Counterexample, or proof of non-existence
- If a counterexample exists
- One can almost certainly be found between order 501 and 1000
- This area is being filled out now
- Ongoing work toward a mathematical proof

There Remain Mysteries

- There are exactly 4 Costas arrays of these orders
- 3, 55, 67, 75, 127, 175, 187, 235, 247, 307, 355, 375, 415, 427, 435, 475, 487, 495...
- Nearly all of these are found with the Taylor4 or Golomb*4 generators
- Begin with Lempel-Golomb
- Remove (1,2) and (2,1), or (1,1) and (2,q-2)

Ongoing Work

- A new look at generators
- Math is promising
- Generating polynomial is heuristic, non-unique
- Formulation is different for Welch, Lempel-Golomb generators
- Extend the database
- Search uses extensive "spin" that slows the generator program in proportion to N^{3}
- "Spin" is essentially a targeted search that is less fruitful as the order increases
- May drop "spin" for higher order if examination of database justifies this

On the Web Site

- Available by the end of March, 2010
- Extended database
- Updated database extraction program
- CISS 2010 paper and slides
- Costas array data for order 556
- A page on my Engineering web site
- Link on main page of http://jameskbeard.com
- Don't forget this whole web site: http://www.costasarrays.org/

