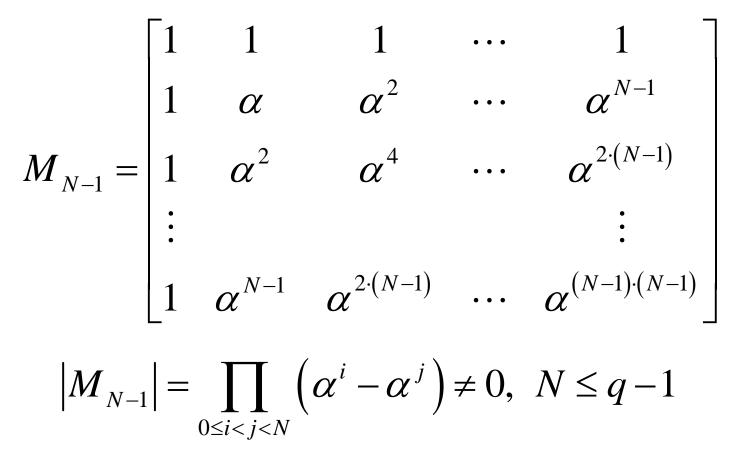

CISS 2010 technique that maximizes backtrack and symmetry exploitation

James K Beard

Life Senior Member, IEEE jkbeard@ieee.org

Copyright © 2010 James K Beard All Rights Reserved

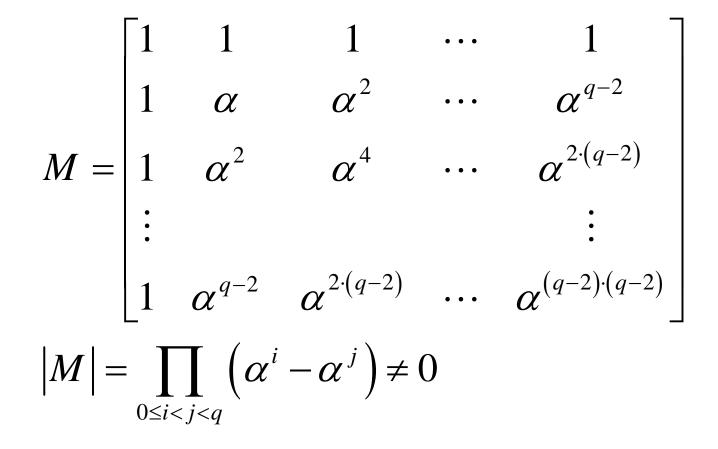
The Last Costas Array


- Costas array of order 27
- Here it is

11	10	4	24	7	23	3	18	21	9	26	16	5	1	15	27	2	25	17	22	19	6	8	12	20	13	14
12	17	10	24	22	8	19	3	7	20	9	16	13	1	2	4	27	26	18	5	23	6	15	25	21	11	14
14	11	21	25	15	6	23	5	18	26	27	4	2	1	13	16	9	20	7	3	19	8	22	24	10	17	12
14	13	20	12	8	6	19	22	17	25	2	27	15	1	5	16	26	9	21	18	3	23	7	24	4	10	11
14	15	8	16	20	22	9	6	11	3	26	1	13	27	23	12	2	19	7	10	25	5	21	4	24	18	17
14	17	7	3	13	22	5	23	10	2	1	24	26	27	15	12	19	8	21	25	9	20	6	4	18	11	16
16	11	18	4	6	20	9	25	21	8	19	12	15	27	26	24	1	2	10	23	5	22	13	3	7	17	14
17	18	24	4	21	5	25	10	7	19	2	12	23	27	13	1	26	3	11	6	9	22	20	16	8	15	14

Properties of Finite Fields

- Finite fields of order q, denoted by GF(q)
- Any implementation of *GF(q)* is isometric to all other implementations
- GF(q) exists when $q=p^k$, p a prime, k>0
- Commutative and associative addition, subtraction, multiplication, division
- In every GF(q) there is a zero and a one
- Every element x has the properties $x^q = x$ and $p \cdot x = 0$
- Other than zero and one, magnitude is not a meaningful concept
- There exist $\Phi(q-1)$ primitive elements α_i
 - Where $\Phi(q-1)$ is the Euler totient function
 - Powers of each α_i cycle through all the nonzero elements


The Vandermonde Matrix

March 17, 2010, 11:00 AM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved Slide 4 of 20

The Order q-1 Vandermonde Matrix

March 17, 2010, 11:00 AM

Copyright © 2008 James K Beard, ISSS, IEEE All Rights Reserved

Generating Polynomials for a CIS Golomb-Generated CA 201

- Table entries are "log to the base alpha"
 - Alpha is the principal element "x"
 - Alpha taken to the power of the table entry equals the polynomial coefficient
 - -99 is placeholder for zero
- Polynomial in GF(N+2) is the Golomb generator
- Other polynomials seem unremarkable

Generating Polynomials for the Last Costas Array

GF(29)

23	14	2	23	11	24	13	7	4	-99	27	19	3	14	13	22	17	17	9	23	24	4	26	17	23	4	24
14	6	18	7	21	21	-99	7	22	9	10	3	0	-99	8	23	10	0	20	19	7	26	1	2	13	8	3
16	20	-99	2	15	15	16	-99	16	24	10	10	13	2	15	6	14	13	5	6	8	8	13	21	7	15	24
16	0	5	18	4	1	7	9	9	10	17	15	5	0	14	8	23	12	2	18	26	25	9	2	11	7	2
14	3	20	25	8	20	27	9	22	27	18	27	15	3	3	19	24	27	27	20	11	8	4	17	18	2	19
0	7	19	18	27	1	21	17	5	9	14	22	9	3	0	26	12	18	0	0	21	24	14	9	-99	-99	-99
8	14	26	21	0	3	0	21	9	24	21	23	26	3	20	22	0	24	5	26	2	5	8	18	23	9	7
8	17	20	17	4	5	0	27	6	24	9	5	8	20	7	25	18	6	14	1	0	-99	12	15	3	25	8

GF(31)

4	3	18	1	28	28	2	20	7	18	-99	15	1	27	17	9	6	26	-99	3	22	12	5	28	17	13	22
10	13	21	17	10	7	28	10	3	29	6	6	1	15	4	18	16	18	17	1	2	18	7	14	0	6	0
8	29	24	20	19	3	18	4	13	12	1	20	1	23	20	-99	23	13	15	20	0	15	5	2	12	11	10
24	21	6	6	23	8	13	0	-99	16	25	11	0	27	28	10	16	22	11	5	2	21	4	0	20	23	24
0	29	11	7	22	22	25	25	20	21	28	4	4	27	25	29	9	2	16	22	20	-99	1	14	26	26	14
15	29	23	12	5	15	-99	13	3	20	16	9	29	8	29	22	18	24	-99	13	23	29	12	22	28	29	7
23	17	4	26	29	22	-99	8	1	11	9	1	25	18	0	19	0	29	17	5	0	8	1	15	11	3	2
1	6	19	15	20	22	27	21	8	28	17	24	5	28	8	18	10	12	25	23	21	6	24	11	9	25	25

Other Methods

- Augmentation
 - Construct augmented matrix from two Costas arrays
 - Result must satisfy Costas condition
 - Interaction between matrices will almost always result in a violation of the Costas condition
- Interleaving
 - Two Costas arrays with orders differing by at most one
 - Construct checkerboard interleaved matrix

Augmentation Results

- Operated on database of all known Costas arrays up to order 400
- No success in interleaving equal order Costas arrays
- No success in augmenting 2X2 or 3X3 other than known Taylor/Golomb extensions and one example

Database Extended

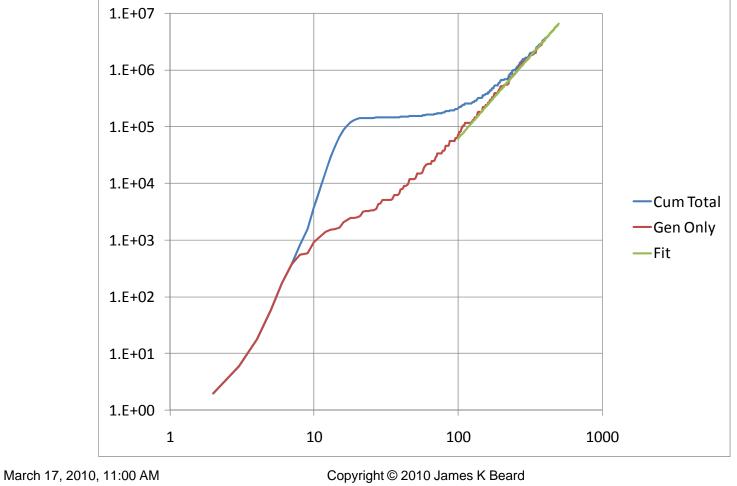
- Generated Costas arrays to order 500
- Available on web site by Monday
 - <u>http://jameskbeard.com</u>
- Updated user interface program

Screen Shot

	Order	All	Essential	Symmetrical	G-Symmetrical
	22	2052	259	5	220
	26	56	8	2	0
Current order:	: 27	204	29	7	0
	* * * * *	* * * * *	* * * * *	* * * * *	****
	* * * * *	* * * * *	* * * * *	****	****
	* * * * *	* * * * *	* * * * *	* * * * *	****
Current option					* * * * * * * * * * * * * * *
1 T, T == 2 27, Orde 3 F, T ==	er of CAs fo > filter by	or output generator me	ethod; F => ou	-	
1 T, T == 2 27, Orde 3 F, T == 4 0, If p	> all CAs to er of CAs fo > filter by previous opt	or output generator me ion is T, f:	ethod; F => ou llter by gener		1 to 19
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 ==	> all CAs to er of CAs fo > filter by previous opt > All, 2 =>	or output generator me tion is T, f: Essential, S	ethod; F => ou llter by gener 3 => Symmetric	utput all rator method i	l to 19 ymmetrical
1 T, T == 2 27, Orde 3 F, T == 4 0, If r 5 1, 1 == 6 0, 0 == 7 REWIND, APP	> all CAs to er of CAs fo > filter by previous opt > All, 2 => > Output CAs END => apper	or output generator me tion is T, f: Essential, a are row inc ad to existin	ethod; F => ou ilter by gener 3 => Symmetric lices from 0 to ng output file	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND =>	1 to 19 ymmetrical from 1 to N
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 == 6 0, 0 == 7 REWIND, APPP 8 T, T ==	 all CAs to filter by previous opt All, 2 => Output CAs END => apper Find gener 	or output generator me tion is T, f: Essential, f are row inc ating polyno	ethod; F => on llter by gener 3 => Symmetric lices from 0 t	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND =>	1 to 19 ymmetrical from 1 to N
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 == 6 0, 0 == 7 REWIND, APPP 8 T, T == 9 49, Orde	 all CAs to filter by previous opt All, 2 => Output CAs END => apper Find gener of Galois 	or output generator me ion is T, f: Essential, i are row ind ad to existing field.	ethod; F => ou llter by gener 3 => Symmetric lices from 0 to ng output file omial in a Gal	utput all rator method i cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field.	l to 19 ymmetrical from 1 to N overwrite
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 == 6 0, 0 == 7 REWIND, APPP 8 T, T == 9 49, Orde 10 C:\Data\IEP	 all CAs to ar of CAs for filter by previous opt All, 2 => Output CAs END => apper Find gener Find gener Galois EE\Papers\CI 	or output generator me tion is T, f: Essential, f are row inc ad to existin rating polyno field. ESS\CISS2006	ethod; F => ou llter by gener 3 => Symmetric dices from 0 to ng output file omial in a Gal	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field. , Database fo	l to 19 ymmetrical from 1 to N overwrite lder
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 == 6 0, 0 == 7 REWIND, APPP 8 T, T == 9 49, Orde 10 C:\Data\IEP	 all CAs to ar of CAs for filter by previous opt All, 2 => Output CAs END => apper Find gener Find gener Galois EE\Papers\CI 	or output generator me tion is T, f: Essential, f are row inc ad to existin rating polyno field. ESS\CISS2006	ethod; F => ou llter by gener 3 => Symmetric dices from 0 to ng output file omial in a Gal	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field. , Database fo	l to 19 ymmetrical from 1 to N overwrite lder
1 T, T =: 2 27, Orde 3 F, T =: 4 0, If p 5 1, 1 =: 6 0, 0 =: 7 REWIND, APPP 8 T, T =: 9 49, Orde 10 C:\Data\IEN 11 .\Costas_App	<pre>> all CAs to er of CAs fo > filter by previous opt > All, 2 => > Output CAs END => apper > Find gener er of Galois EE\Papers\CI cray_Databas</pre>	or output generator me tion is T, f: Essential, S are row ind to existing to existing to existing ating polyno field. Ess\CISS2006 Se_Output.tx	ethod; F => ou lter by gener 3 => Symmetric dices from 0 to bg output file omial in a Gal (CDROM_Image), c, Pathname fo	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field. , Database fo or output text	l to 19 ymmetrical from 1 to N overwrite lder
1 T, T =: 2 27, Orde 3 F, T =: 4 0, If p 5 1, 1 =: 6 0, 0 =: 7 REWIND, APPP 8 T, T =: 9 49, Orde 10 C:\Data\IEP 11 .\Costas_App	<pre>> all CAs to er of CAs fo > filter by previous opt > All, 2 => > Output CAs END => apper > Find gener er of Galois EE\Papers\CI cray_Databas</pre>	or output generator me tion is T, f: Essential, S are row ind to existing to existing to existing ating polyno field. Ess\CISS2006 Se_Output.tx	ethod; F => ou lter by gener 3 => Symmetric dices from 0 to bg output file omial in a Gal (CDROM_Image), c, Pathname fo	utput all rator method f cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field. , Database fo or output text	l to 19 ymmetrical from 1 to N overwrite lder
1 T, T == 2 27, Orde 3 F, T == 4 0, If p 5 1, 1 == 6 0, 0 == 7 REWIND, APPP 8 T, T == 9 49, Orde 10 C:\Data\IEP	<pre>> all CAs to er of CAs fo > filter by previous opt > All, 2 => > Output CAs END => apper > Find gener er of Galois EE\Papers\CI cray_Databas</pre>	or output generator me tion is T, f: Essential, 3 are row ind to existing to existing to existing ating polyno field. Ess\CISS2006 Se_Output.txt age, 12 for 1	ethod; F => ou lter by gener 3 => Symmetric dices from 0 to bg output file omial in a Gal (CDROM_Image), c, Pathname fo	utput all rator method : cal, 4 => G-Sy to N-1, 1 => f es; REWIND => lois field. , Database fo or output text proceed:	l to 19 ymmetrical from 1 to N overwrite lder

Slide 11 of 20

Screen Shot


	Order	All	Essential	Symmetrical	G-Symmetrical
	448	172032	21504	0	86016
	455	21312	2700	72	0
Current order:	456	131328	16416	0	65664
	458	276	35	1	0
	460	162024	20253	0	80960
*****	******	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *
Current options	:				
-					
No. Value, Desc	ription				
1 F, T =>	all CAs t	o order 27;	F => generated	d CAs to order	r 500
2 456, Order	of CAs f	or output			
3 F, T =>	filter by	generator m	ethod; F => ou	utput all	
4 0, If pr	evious op	tion is T, f	ilter by gener	rator method 3	l to 19
5 1, 1 =>	All, 2 =>	Essential,	3 => Symmetric	cal, 4 => G-S	ymmetrical
6 0, 0 =>	Output CA	are row ind	dices from 0 t	to N-1, 1 => :	Erom 1 to N
7 REWIND, APPEN	D => appe	and to existing	ng output file	es; REWIND =>	overwrite
8 T, T =>	Find gene	rating polyno	omial in a Ga	lois field.	
9 49, Order	• of Galoi	s field.			
10 C:\Data\IEEE	\Papers\C	SISS\CISS2006	\CDROM_Image\	, Database fo	lder
	-			-	
11 .\Costas_Arr	av Databa	ISE OULDUL.LX	c, Pathname Lo	JI UULDUL LEA	

March 17, 2010, 11:00 AM

Copyright © 2010 James K Beard All Rights Reserved Slide 12 of 20

Cumulative Totals versus Order

All Rights Reserved

Conjecture Probably FALSE

- The number of Costas arrays of any given order *N*>23 does not exceed *N*². [FALSE]
- Costas arrays of order 556
 - Total of 306,912
 - 383,684 essential Costas arrays
 - No symmetrical Costas arrays
 - 153,456 G-symmetrical Costas arrays, 38,364 of which are unique
- 556² = 309,136; we have 99.3%

Why It's Important

- A hard limit of N² indicates that a universal generator of rank 2 may exist
- Work on linear algebra in Galois fields for CISS 2008 paper
 - Promising
 - The most powerful linear algebra tools are not available
 - Self-annihilating vectors
 - Square roots do not exist for odd powers of principal elements
- Holy Grail is definition of a rank 2 generator

Why It's Probably False

- Equality is reached in one known case
 - There are 65536 Costas arrays of order 256
 - None of them are symmetrical
 - 32768 of them are G-symmetrical
 - 8192 of them are unique G-symmetrical Costas arrays
- False for every order from 5 through 23
- Near-equality is reached multiple times
 - N(28) = 712 or 91% of 28² = 784
 - N(46) = 2044 or 96.6% of 46² = 2116
 - See orders 58, 82, 106, 166, 178,226, 256(!), 358, 556
 - Presently running generators over range 501-600
- Orders 256 and 556 strongly indicate that the conjecture is probably false

Final Resolution is Near

- Two ways to resolve this conjecture
 - Mathematical proof of the existence of a rank 2 generator of all potential Costas arrays
 - Counterexample, or proof of non-existence
- If a counterexample exists
 - One can almost certainly be found between order 501 and 1000
 - This area is being filled out now
- Ongoing work toward a mathematical proof

There Remain Mysteries

- There are exactly 4 Costas arrays of these orders
 - 3, 55, 67, 75, 127, 175, 187, 235, 247, 307, 355, 375, 415, 427, 435, 475, 487, 495...
- Nearly all of these are found with the Taylor4 or Golomb*4 generators
 - Begin with Lempel-Golomb
 - Remove (1,2) and (2,1), or (1,1) and (2,q-2)

Ongoing Work

- A new look at generators
 - Math is promising
 - Generating polynomial is heuristic, non-unique
 - Formulation is different for Welch, Lempel-Golomb generators
- Extend the database
 - Search uses extensive "spin" that slows the generator program in proportion to N³
 - "Spin" is essentially a targeted search that is less fruitful as the order increases
 - May drop "spin" for higher order if examination of database justifies this

On the Web Site

- Available by the end of March, 2010
 - Extended database
 - Updated database extraction program
 - CISS 2010 paper and slides
 - Costas array data for order 556
- A page on my Engineering web site
 - Link on main page of http://jameskbeard.com
 - Don't forget this whole web site: <u>http://www.costasarrays.org/</u>