

Philadelphia Section Engineer's Week

Characterization of Rotating and Spinning Bodies with Quaternions

James K Beard, Ph.D. Independent Consultant http://www.JamesKBeard.com

Our Topics Tonight

- What quaternions are and why they are important
- Some places that quaternions are used
- Quaternion rotation explained and simplified
- Why quaternions are simpler than rotation matrices
- How quaternions are more accurate in computing
- Quaternions in Euler's equations of motion for rotating bodies
- Using quaternions in characterizing position and velocity
- Examples, with animations
- Selected references

What Are Quaternions? Why Are They Useful?

- Quaternions are
 - A way of working with rotating rigid bodies
 - The "sum" of a scalar and a vector

Why are quaternions important?

- Their use takes the pain out of modeling aircraft, missiles, spinning bodies, etc.
- They are easily incorporated into
 - Models that include rotating rigid bodies
 - Computer program for analysis or in embedded functions in systems
 - Inertial navigation units and autopilots

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 3 of 59

Where Do We Find Quaternions in Use?

Your airplanes

- The autopilot and INU keeps track of latitude, longitude, altitude
- Quaternions are used in characterizing position
- Aircraft orientation roll, pitch and yaw
- Your quad drone in its autopilot
- Your cell phone
- 🧕 Your car
- 🧕 In space
 - Launch vehicles
 - Spacecraft

http://antwrp.gsfc.nasa.gov/apod/ap021124.htmlhttp://spaceflight.nasa.gov/ gallery/images/shuttle/sts-82/html/s82e5937.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=118762

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

F-35A Maneuvers to Refuel from KC-135

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 5 of 59

What Are Quaternions, Exactly?

Algebraically

- A scalar associated with a vector in 3-space
- Or, a particular 4-vector or a special 4 by 4 matrix

What do they do?

- Addition and subtraction are just like vectors
- Multiplication:

$$(a_1 + \underline{v}_1) \cdot (a_2 + \underline{v}_2) = a_1 \cdot a_2 - (\underline{v}_1^T \cdot \underline{v}_2) + a_1 \cdot \underline{v}_2 + a_2 \cdot \underline{v}_1 + \underline{v}_1 \times \underline{v}_2$$

 \bigcirc Division: multiplication by the reciprocal of a quaternion $\begin{bmatrix} q_0 & -q_1 & -q_2 & -q_1 \\ q_0 & q_1 & -q_2 & -q_1 \end{bmatrix}$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 6 of 59

 q_0

 $egin{array}{c|c} q_1 \ q_2 \end{array}$

 $q = q_0 + \underline{v}_q =$

Multiplication is Not Commutative

Order of factors in multiplication is significant

$$(a_1 + \underline{v}_1) \cdot (a_2 + \underline{v}_2) = a_1 \cdot a_2 - (\underline{v}_1^T \cdot \underline{v}_2) + a_1 \cdot \underline{v}_2 + a_2 \cdot \underline{v}_1 + \underline{v}_1 \times \underline{v}_2$$
$$(a_2 + \underline{v}_2) \cdot (a_1 + \underline{v}_1) = a_1 \cdot a_2 - (\underline{v}_1^T \cdot \underline{v}_2) + a_1 \cdot \underline{v}_2 + a_2 \cdot \underline{v}_1 - \underline{v}_1 \times \underline{v}_2$$

These products are NOT THE SAME

Unless

$$\underline{v}_1 \times \underline{v}_2 = \underline{0}$$

THIS IS IMPORTANT We will get back to it later

- Sets of quaternions that all have the same vector axis
 - Coaxial quaternions form a field that is isometric to complex numbers

All complex arithmetic and analytic functions are valid in these fields
 James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017
 Slide 7 of 59

Where Did They Come From?

- First formulated as such in 1843 by William Rowan Hamilton in 1843
 - Inspiration carved on the side of Brougham Bridge in chalk:

$$i^{2} = j^{2} = k^{2} = i \cdot j \cdot k = -1$$
$$i \cdot j = k, \ j \cdot i = -k$$
$$j \cdot k = i, \ k \cdot j = -i$$
$$k \cdot i = j, \ i \cdot k = -j$$

Basic Concept is Vector Cross-Product

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 8 of 59

Why Are They Important?

The algebra of rotating body coordinates

- A method to characterize rotating coordinates of a point on a body
 - Nose and wing positions on an aircraft
 - Leading edge of a Frisbee
 - Direction Up/Down, positions of control fins of spinning missile
 - A point on the ground or another aircraft
- From the standpoint of a ground observer or target
- From the standpoint of the missile or aircraft
- Known principles are older
 - Euler's Rotation Theorem of 1775: Multiple rotations of a rigid body are equivalent to a rotation about a single axis
 - Coordinate rotation matrices use three rotations: roll, pitch, yaw

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 9 of 59

Other Uses of Quaternions

- 🧕 Geometry
 - Plane and solid geometry, as an extension to vector algebra (see Hardy in the References)
 - Computer graphics, for their ability to rotate solid bodies
 - Computer vision, to provide
 - Rotation of a solid object
 - Movement of the solid object
 - Rotation and movement of the viewer point of view
- Crystallographic texture analysis (see References)
- Pure and applied mathematics
 - Cayley algebras (see References)

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 10 of 59

Quaternion Rotations are Used in

Autopilots, to keep track of

- The orientation of the platform
- Angle of attack relative to aircraft motion
- The field of view of the aircraft's sensors

Computer vision

- To characterize the orientation of an object
- To characterize the orientation of the viewer
- Tracking and estimation
 - To estimate the orientation of an object to model its flight dynamics
 - To estimate what a tracked object "sees"

The Key Capability is Characterizing Rotation

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 11 of 59

Some Vector Identities We Will Need

Subspace operator, finds projection onto plane normal to v

Identity Matrix

 $v \times w = S \cdot w$

Skew-symmetric form for use with cross-products

$$S_{v} = \frac{\partial \left(\underline{v} \times \underline{w}\right)}{\partial \underline{w}} = \begin{bmatrix} 0 & -v_{3} & +v_{2} \\ +v_{3} & 0 & -v_{1} \\ -v_{2} & +v_{1} & 0 \end{bmatrix}, \quad S_{v}^{2} = -\left(\underline{v}^{T} \cdot \underline{v}\right) \cdot Sub_{v}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 12 of 59

Unit Vectors and Notation

Unit vector along a vector <u>v</u>

$$\underline{u}_{v} = \frac{\underline{v}}{|\underline{v}|} = \frac{\underline{v}}{\sqrt{(\underline{v}^{T} \cdot \underline{v})}}$$

Right-hand-rule unit vector

$$\underline{v} \times \underline{w} = |\underline{v}| \cdot |\underline{w}| \cdot \sin(\alpha) \cdot \underline{u}_{Rvw}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 13 of 59

Two Ways of Interpreting <u>v x w x v</u>

• The repeated cross product, geometric viewpoint $\underline{v} \times (\underline{v} \times \underline{w}) = \underline{v} \times (|\underline{v}| \cdot |\underline{w}| \cdot \sin(\alpha) \cdot \underline{u}_{Rvw}) = |\underline{v}| \cdot (|\underline{v}| \cdot |\underline{w}| \cdot \sin(\alpha)) \cdot \underline{u}_{Rv(vw)}$ $= -(\underline{v}^T \cdot \underline{v}) \cdot (I - \frac{\underline{v} \cdot \underline{v}^t}{(\underline{v}^T \cdot \underline{v})}) \cdot \underline{w}$ $\underbrace{\underline{v} \times \underline{w} = |\underline{v}| \cdot |\underline{w}| \cdot \sin(\alpha) \cdot \underline{u}_{Rvw}}{(\underline{v} \times \underline{w}) \times \underline{v} = (S_v \cdot \underline{w}) \times \underline{v} = -\underline{v} \times (S_v \cdot \underline{w})$ $= -S_v \cdot (S_v \cdot \underline{w}) = -S_v^2 \cdot \underline{w} = (\underline{v}^T \cdot \underline{v}) Sub_v \cdot \underline{w}$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 14 of 59

How Do Quaternions Rotate vectors?

- A few definitions of quaternion arithmetic
 - Consider a vector as a quaternion with a zero real part
 - Define the conjugate of a quaternion as reversing the sign of the vector part
- Left-multiply a vector by a quaternion $q \cdot \underline{v} = (a + \underline{b}) \cdot \underline{v}$
- Then right-multiply that result by $1/q = -(\underline{b}^T \cdot \underline{v}) + a \cdot \underline{v} + \underline{b} \times \underline{v}$

$$q \cdot \underline{v} \cdot \frac{1}{q} = \frac{1}{a^2 + (\underline{b}^T \cdot \underline{b})} \cdot (a^2 \cdot \underline{v} + (\underline{b}^T \cdot \underline{v}) \cdot \underline{b} + 2 \cdot a \cdot (\underline{b} \times \underline{v}) - \underline{b} \times \underline{v} \times \underline{b})$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 15 of 59

A Huge Simplification (1 of 2)

- Solution Use a quaternion defined using a rotation angle ϕ and axis \underline{u} $q = \cos\left(\frac{\phi}{2}\right) + \sin\left(\frac{\phi}{2}\right) \cdot \underline{u}$
- Then $q \cdot \underline{v}(1/q)$ becomes $q \cdot \underline{v} \cdot \frac{1}{q} = a^2 \cdot \underline{v} + (\underline{b}^T \cdot \underline{v}) \cdot \underline{b} + 2 \cdot a \cdot (\underline{b} \times \underline{v}) - \underline{b} \times \underline{v} \times \underline{b}$ $= \cos^2 (\frac{\phi}{2}) \cdot \underline{v} + \sin^2 (\frac{\phi}{2}) \cdot (\underline{u} \cdot \underline{u}^T) \cdot \underline{v} + \sin(\phi) \cdot (\underline{u} \times \underline{v}) - \sin^2 (\frac{\phi}{2}) \cdot Sub_u \cdot \underline{v}$ $= (\underline{u} \cdot \underline{u}^T) \cdot \underline{v} + \cos(\phi) \cdot Sub_u \cdot \underline{v} + \sin\phi \cdot (\underline{u} \times \underline{v})$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 16 of 59

A Huge Simplification (2 of 2)

Interpreting this operation:

$$q \cdot \underline{v} \cdot \frac{1}{q} = \left(\underline{u} \cdot \underline{u}^{T}\right) \cdot \underline{v} + \cos\left(\phi\right) \cdot Sub_{u} \cdot \underline{v} + \sin\phi \cdot \left(\underline{u} \times \underline{v}\right)$$

- The first term $(\underline{u} \cdot \underline{u}^T) \cdot \underline{v}$
 - Extracts the component of <u>v</u> along <u>u</u>
 - This component of <u>v</u> is left unchanged
- Sub_u $\cdot \underline{v}$ The second term $\cos(\phi) \cdot Sub_u \cdot \underline{v}$
 - Sinds the projection of \underline{v} on plane normal to \underline{u} times $\cos(\phi)$
- The third term $\sin \phi \cdot (\underline{u} \times \underline{v})$
 - Sinds the projection of \underline{v} on plane normal to \underline{u} times sin(ϕ)

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 17 of 59

Summary of Quaternion Rotation

Given the rotation quaternion

$$q = \cos\left(\frac{\phi}{2}\right) + \sin\left(\frac{\phi}{2}\right) \cdot \underline{u} \qquad \qquad q = \exp\left(\frac{\phi}{2} \cdot \underline{u}\right)$$

- Axis of rotation is <u>u</u>
- Angle of rotation is φ
- Direction of rotation is by the right-hand-rule
- Range of the variable φ

$$-\pi < \phi \le \pi, \quad -\frac{\pi}{2} < \frac{\phi}{2} \le \frac{\pi}{2} \Leftrightarrow \cos\left(\frac{\phi}{2}\right) \ge 0$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 18 of 59

The Cone of Rotation

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 19 of 59

Geometry of Quaternion Rotation

Slide 20 of 59

Why are Quaternions Simpler?

A rotation from the current right-handed Cartesian coordinate system is with a 3 X 3 matrix

$$A_{Rot} = \begin{bmatrix} \underline{u}_X^T \\ \underline{u}_Y^T \\ \underline{u}_Z^T \end{bmatrix}, \quad A_{Rot} \cdot \underline{v} = \begin{bmatrix} \left(\underline{u}_X^T \cdot \underline{v} \right) \\ \left(\underline{u}_Y^T \cdot \underline{v} \right) \\ \left(\underline{u}_Z^T \cdot \underline{v} \right) \end{bmatrix} = \underline{v}_{New}$$

Need to use A when you have the quaternion?

$$A_{Rot}\left(q_{0}+\underline{v}_{q}\right) = \frac{1}{\left|q\right|^{2}} \cdot \left[\left(q_{0}^{2}-\left|\underline{v}_{q}\right|^{2}\right) \cdot I + 2 \cdot \left(q_{0} \cdot S\left(\underline{v}_{q}\right)+\underline{v}_{q} \cdot \underline{v}_{q}^{T}\right)\right]$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 21 of 59

The Aerospace Sequence

- The Aerospace Sequence, rotating from ECEF to airframe coordinates
 - First rotate clockwise-looking-down about the Up axis to aircraft heading plus yaw,
 - Then rotate clockwise-bow-to-right about the aircraft pitch axis to the aircraft attitude,
 - Then rotate clockwise-looking-forward to aircraft roll angle.
- Order applied is Yaw, then Pitch, then Roll.
- To rotate from airframe to ECEF, order is reversed

Rotating To and From Other Coordinates

• To rotate from ECEF to airframe coordinates $\underline{v}_{Airframe} = q \cdot \underline{v}_{ECEF} \cdot q^*$

- To rotate from airframe coordinates to ECEF $\underline{v}_{ECEF} = q^* \cdot \underline{v}_{Airframe} \cdot q$
- Simplification: Quaternions don't require
 - Keeping track of the aerospace sequence
 - Maintenance of roll, pitch and yaw angles
 - Special provision for when pitch goes to or through $\pm \pi/2$

Roll, Pitch and Yaw Quaternions

$$q_{Roll} = \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad q_{Pitch} = \begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) \\ 0 \\ \sin\left(\frac{\gamma}{2}\right) \\ 0 \end{bmatrix}, \quad q_{Yaw} = \begin{bmatrix} \cos\left(\frac{\psi}{2}\right) \\ 0 \\ 0 \\ \sin\left(\frac{\psi}{2}\right) \end{bmatrix}$$

 $q = q_{Yaw} \cdot q_{Pitch} \cdot q_{Roll}$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 24 of 59

Quaternion from Euler Angles

$$q = \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \cdot \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) - \sin\left(\frac{\phi}{2}\right) \cdot \sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \cdot \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) + \cos\left(\frac{\phi}{2}\right) \cdot \sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ \cos\left(\frac{\phi}{2}\right) \cdot \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) - \sin\left(\frac{\phi}{2}\right) \cdot \cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \cdot \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) + \cos\left(\frac{\phi}{2}\right) \cdot \cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \end{bmatrix}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 25 of 59

$$A_{Roll} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$
$$A_{Pitch} = \begin{bmatrix} \cos(\gamma) & 0 & \sin(\gamma) \\ 0 & 1 & 0 \\ -\sin(\gamma) & 0 & \cos(\gamma) \end{bmatrix}$$
$$A_{Yaw} = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $A = A_{Roll} \cdot A_{Pitch} \cdot A_{Yaw}$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 26 of 59

Need Quaternion from Rotation Matrix? (1 of 2)

- We need these to find the quaternion from A $Sym\{A\} = \frac{1}{2} \cdot (A + A^{T}), Asym\{A\} = \frac{1}{2} \cdot (A - A^{T})$ $trace\{A\} = A_{1,1} + A_{2,2} + A_{3,3}$
- The rotation quaternion axis <u>asv_{Asym}</u> is found from

$$\operatorname{Asym}\{A\} = \begin{bmatrix} 0 & -asv_3 & +asv_2 \\ +asv_3 & 0 & -asv_1 \\ -asv_2 & +asv_1 & 0 \end{bmatrix} \Leftrightarrow \underline{asv}_{Asym} = \begin{bmatrix} asv_1 \\ asv_2 \\ asv_3 \end{bmatrix} = \sin(\phi) \cdot Ss_u$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 27 of 59

Quaternion from Rotation Matrix (2 of 2)

- Sine and cosine of roll and axis vector from asymmetric Matrix $\underline{asv}_{Asym} = \begin{bmatrix} asv_1 \\ asv_2 \\ asv_3 \end{bmatrix} = \sin(\phi) \cdot Ss_u, \quad \cos(\phi) = \frac{trace\{A_{Sym}\} - 1}{2}$
- Quaternion

$$\sin(\phi) = \left| \underline{asv}_{Asym} \right|, \ \underline{u} = \frac{\underline{asv}_{Asym}}{\left| \underline{asv}_{Asym} \right|}$$
$$z = \tan\left(\frac{\phi}{2}\right) = \frac{1 - \cos(\phi)}{\sin(\phi)} = \frac{\sin(\phi)}{1 + \cos(\phi)}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

 $q = \frac{1-z^2}{1+z^2} + \frac{2 \cdot z}{1+z^2} \cdot \underline{u}$

Slide 28 of 59

Euler Angles from Quaternion

$$q_{1} \cdot q_{3} + q_{2} \cdot q_{4} = \frac{1}{2} \cdot \sin(\gamma)$$

$$q_{1} \cdot q_{4} - q_{2} \cdot q_{3} = \frac{1}{2} \cdot \left(\cos(\gamma) \cdot \sin(\psi)\right)^{-1}$$

$$q_{1}^{2} + q_{2}^{2} - q_{3}^{2} - q_{4}^{2} = \cos(\gamma) \cdot \cos(\psi)^{-1}$$

Provides pitch

Together with twoargument arctangent Provides yaw

Find roll, given pitch and yaw, from:

$$\frac{\cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right)}{\sin\left(\frac{\lambda}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right)} - \sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right)} \left[\cdot \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \end{bmatrix}$$

From any two elements of q

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 29 of 59

Full Ambiguity Range of Roll from Quaternion

$$\begin{bmatrix} \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) & -\sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ \sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \end{bmatrix} \cdot \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \end{bmatrix} \qquad \text{From any two elements of } q$$

$$\begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \\ \left[\frac{\cos\left(\frac{\phi}{2}\right) \\ 1 + \cos\left(\gamma\right) \cdot \cos\left(\psi\right) \\ -\sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \\ -\sin\left(\frac{\psi}{2}\right) \\ \cos\left(\frac{\phi}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \end{bmatrix} \cdot \begin{bmatrix} q_0 \\ q_1 \end{bmatrix}$$

$$\frac{\phi}{2} = \tan 2 \begin{bmatrix} -\sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \cdot q_0 + \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \cdot q_1, \\ \cos\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \cdot q_0 + \sin\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \cdot q_1 \end{bmatrix} \qquad \text{Given Y and } \psi$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 30 of 59

Full Ambiguity Range of Roll from Quaternion

$$\begin{bmatrix} \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) & -\cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ \cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) & \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \end{bmatrix} \cdot \begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \end{bmatrix} = \begin{bmatrix} q_2 \\ q_3 \end{bmatrix}$$
 From any two elements of q
$$\begin{bmatrix} \cos\left(\frac{\phi}{2}\right) \\ \sin\left(\frac{\phi}{2}\right) \end{bmatrix} = \frac{2}{1 - \cos(\gamma) \cdot \cos(\psi)} \cdot \begin{bmatrix} \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) & \cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \\ -\cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) & \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \end{bmatrix} \cdot \begin{bmatrix} q_2 \\ q_3 \end{bmatrix}$$
$$\frac{\phi}{2} = \tan 2 \begin{bmatrix} -\cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \cdot q_2 + \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \cdot q_2, \\ \sin\left(\frac{\gamma}{2}\right) \cdot \cos\left(\frac{\psi}{2}\right) \cdot q_2 + \cos\left(\frac{\gamma}{2}\right) \cdot \sin\left(\frac{\psi}{2}\right) \cdot q_3 \end{bmatrix}$$
 Given Y and ψ

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 31 of 59

Rotation Matrix and The Euler Angles

Rotation matrix in terms of Euler angles

Product of roll, pitch, yaw rotation matrices

$$A = \begin{bmatrix} \cos(\gamma) \cdot \cos(\psi) & -\cos(\gamma) \cdot \sin(\psi) & \sin(\gamma) \\ \sin(\phi) \cdot \sin(\gamma) \cdot \cos(\psi) + \cos(\phi) \cdot \sin(\psi) & -\sin(\phi) \cdot \sin(\gamma) \cdot \sin(\psi) + \cos(\phi) \cdot \cos(\psi) & -\sin(\phi) \cdot \cos(\gamma) \\ -\cos(\phi) \cdot \sin(\gamma) \cdot \cos(\psi) + \sin(\phi) \cdot \sin(\psi) & \cos(\phi) \cdot \sin(\gamma) \cdot \sin(\psi) + \sin(\phi) \cdot \cos(\psi) & \cos(\phi) \cdot \cos(\gamma) \end{bmatrix}$$

Euler angles from rotation matrix

$$\psi = \operatorname{atan} 2(A_{12}, A_{11})$$

$$\gamma = \cos^{-1} \left(\sqrt{A_{11}^2 + A_{12}^2} \right) = \sin^{-1} (A_{13}) = \operatorname{atan} 2 \left(A_{13}, \sqrt{A_{11}^2 + A_{12}^2} \right)$$

$$\phi = \operatorname{atan} 2 \left(-A_{23}, A_{33} \right)$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 32 of 59

The Orbital Element Sequence

Reference frame is ECIC

- X axis through vernal equinox (in Aries)
- Z axis through North pole
- Y axis is cross-product of Z axis with Y axis to give a right-handed system
- Translation to orbital elements coordinate system
 - First, rotation in longitude, positive East to the line of nodes (the longitude of the ascending node, or the point above which the satellite passes through the equatorial plane Northbound)
 - Then, inclination of the orbital plane, positive Eastward half plane upward
 - Then, true anomaly or angle from that point to the new X axis positive Northward.

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Common Platform Coordinate Systems

The Aerospace Sequence

- Called the zyx sequence
- Rotating base coordinates in order of yaw, pitch, then roll
- Usually used for airborne objects from ECEF

The Orbital Element Sequence

- Called the zxz sequence
 - Rotating in longitude to the line of nodes
 - Then inclination of the orbital plane
 - Rotation to true anomaly
- Usually used for LEO and MEO orbital object positions from ECIC

Others (see Minkler and Minkler in References)

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 34 of 59

What About Equations of Rotational Motion?

- We begin with the moment of inertia matrix
- The next step is the angular momentum vector
- Outside forces are torque on the body
- Generality requires a differential equation
- A differentiation provides the rate of change of the angular momentum
- The resulting differential equation are
 - The equations of rotational motion
 - Classically called Euler's equations

The Moment of Inertia Matrix

$$M = \int \left(\left(\underline{x}^T \cdot \underline{x} \right) \cdot I - \underline{x} \cdot \underline{x}^T \right) \cdot \rho\left(\underline{x} \right) \cdot d\underline{x}$$

Origin of coordinate system

Moment of inertia matrix

- Center of gravity of the body
- HOLD THAT THOUGHT
- Result is a real, symmetrical positive definite matrix
- Singular value decomposition provides
 - Eigenvectors are axes of rotation
 - Eigenvalues form a diagonal moment of inertia matrix

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

 $\underline{x} \cdot \underline{x}^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \cdot \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}$ $\left(\underline{x}^{T} \cdot \underline{x} \right) \cdot I - \underline{x} \cdot \underline{x}^{T} = \begin{bmatrix} x_{2}^{2} + x_{3}^{2} & -x_{1} \cdot x_{2} & -x_{1} \cdot x_{3} \\ -x_{2} \cdot x_{1} & x_{1}^{2} + x_{3}^{2} & -x_{2} \cdot x_{3} \\ -x_{3} \cdot x_{1} & -x_{3} \cdot x_{2} & x_{1}^{3} + x_{2}^{2} \end{bmatrix}$

WE ARE IN BODY COORDINATES

Slide 36 of 59

Angular Momentum

In any coordinate system r, the analog of m v is

$$\underline{h}_r = M \cdot \underline{\omega}_r$$

The time derivative of angular momentum is

$$\frac{d}{dt}\underline{h} = M \cdot \left(\frac{d}{dt}\underline{\omega}_r\right) + \underline{t}\underline{o}$$

Torque is the sum of lever arms crossed into force vectors

$$\underline{to} = \int \underline{r} \times d \underline{f}(\underline{r}) = \int S_r \cdot d \underline{f}$$

Lever arm <u>r</u> is vector from axis to point where force is applied

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 37 of 59

Time Derivative of the Rotation Quaternion

Finding equation for time derivative of quaternion

$$q^* \cdot q = 1$$
$$\frac{d}{dt}q^* \cdot q + q^* \cdot \frac{d}{dt}q = 0, \quad \frac{d}{dt}q^* \cdot q = -q^* \cdot \frac{d}{dt}q$$

- Conjugating a quaternion to produce the negative of the same quaternion means that we have a pure vector
- Derivative of a vector rotated from the body coordinates to the reference coordinate system

$$\frac{d}{dt}\underline{r}_{r} = \frac{d}{dt}\left(q\cdot\underline{r}_{b}\cdot q^{*}\right) = \frac{d}{dt}q\cdot\underline{r}_{b}\cdot q^{*} + q\cdot\underline{r}_{b}\cdot\frac{d}{dt}q^{*}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 38 of 59

Getting to a Cross-Product

Rotating the velocity in the reference coordinate system back to the body coordinates

$$\underline{v}_r = q^* \cdot \frac{d}{dt} \underline{r}_r \cdot q = q^* \cdot \frac{d}{dt} q \cdot \underline{r}_b + \underline{r}_b \cdot \frac{d}{dt} q^* \cdot q$$

Fundamental identity from multiplication of quaternions

$$\frac{1}{2} \cdot \left(\underline{v}_1 \cdot \underline{v}_2 - \underline{v}_2 \cdot \underline{v}_1 \right) = \underline{v}_1 \times \underline{v}_2$$

So that

$$\underline{v}_r = 2 \cdot \left(q^* \cdot \frac{d}{dt} q \right) \times \underline{r}_b = \underline{\omega}_b \times \underline{r}_b, \quad \underline{\omega}_b = 2 \cdot \left(q^* \cdot \frac{d}{dt} q \right)$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 39 of 59

Euler's Equations

- Solution Rotating the angular momentum to the reference frame $q \cdot \underline{h}_r \cdot q^* = q \cdot M \cdot \underline{\omega}_b \cdot q^*$
- Taking the derivative with respect to time

$$\frac{d}{dt}q\cdot\left[M\cdot\underline{\omega}_{b}\right]\cdot q^{*}+q^{*}\cdot\left[M\cdot\underline{\omega}_{b}\right]\cdot\frac{d}{dt}q^{*}+q\cdot\left[M\cdot\frac{d}{dt}\underline{\omega}_{b}\right]\cdot q^{*}$$

Solution Solution Solution Solution Solution Solution For the time derivative of the rotation vector $M \cdot \frac{d}{dt} \underline{\omega}_{b} = \underline{to}_{b} - q^{*} \cdot \frac{d}{dt} q \cdot [M \cdot \underline{\omega}_{b}] - [M \cdot \underline{\omega}_{b}] \cdot \frac{d}{dt} q^{*} \cdot q$ $= \underline{to}_{b} - S_{\omega b} \cdot M \cdot \underline{\omega}_{b}$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 40 of 59

Equation for Numerical Solutions

Euler's Equation for Motion of a Rotating Rigid Body

$$\frac{d}{dt}\underline{\omega}_{b} = M^{-1} \cdot \left(\underline{to}_{b} - S_{\omega b} \cdot M \cdot \underline{\omega}_{b}\right)$$
$$\frac{d}{dt}q = \frac{1}{2} \cdot q^{*} \cdot \underline{\omega}_{b}$$

Time differential equation for the rotation matrix

$$\frac{d}{dt}A = A \cdot S_{\omega b}$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 41 of 59

Why are Quaternions More Accurate

- Sensitivity of rotation matrix are similar
 - WRT Roll, Pitch, Yaw
 - 🥺 WRT q, vq
- Euler's equations & sensitivities
 - Build into your equations an exponential trend toward normalization

 \mathcal{O}_{2}

Solution For quaternions, this is $qstab(q) = qstabconst \cdot (|q|-1), \quad \underline{\omega}a = \begin{bmatrix} qstab(q) \\ \omega_1 \\ \omega_2 \end{bmatrix}, \quad \frac{\Delta a}{qstab(q)}$

Adjust for application *qstabconst* = 1.0

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 42 of 59

Reasons for Including the Stability Term

- Robustness of simulation for unlimited run times
- Eliminates a software maintenance area
- Write-and-forget enabler
 - For critical systems functional blocks
 - For embedded software
 - Trouble-free components of larger models
- Quality attribute for delivered software
 - You won't hear from "quaternion magnitude decay"
 - Confidence by others in using your models
 - Robustness when others use it for non-predicted applications

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 43 of 59

Sources of Error with Quaternions

Numerical errors in Euler's equations

$$\frac{d}{dt}\underline{\omega}_{b} = M^{-1} \cdot \left(\underline{t}\underline{o}_{b} - S_{\omega b} \cdot M \cdot \underline{\omega}_{b}\right)$$

$$\frac{d}{dt}q = \frac{1}{2} \cdot q^{*} \cdot \underline{\omega}_{b}$$
Add a stability term to the angular velocity term

Numerical errors in rotation

$$\underline{v} = q \cdot \underline{v}_b \cdot \frac{1}{q} = \frac{1}{a^2 + (\underline{b}^T \cdot \underline{b})} \cdot (a^2 \cdot \underline{v}_b + (\underline{b}^T \cdot \underline{v}_b) \cdot \underline{b} + 2 \cdot a \cdot (\underline{b} \times \underline{v}_b) - \underline{b} \times \underline{v}_b \times \underline{b})$$

All these equations are well-conditioned numerically

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 44 of 59

Sources of Errors with Direction Cosines

Numerical Error in Euler's Equations

$$\frac{d}{dt}\underline{\omega}_{b} = M^{-1} \cdot \left(\underline{to}_{b} - S_{\omega b} \cdot M \cdot \underline{\omega}_{b}\right)$$

$$\frac{d}{dt}A = A \cdot S_{\omega b}$$

Keeping A unitary is complicated
Differential equations in Euler

angles are complicated

Numerical Error in Rotations

 $\underline{v} = A \cdot \underline{v}_{b}$

Everything is noisier when $|\Upsilon|$ is near $\pi/2$

"Gimbal lock" singularity at $|\Upsilon| = \pi/2$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 45 of 59

Problems in Common with Both Approaches

Interfaces

- Different system blocks have a documented communication interface
- The quantities in the interface are specified by the Interface Control Document (ICD), a systems engineering artifact
 - All quantities passed between system blocks are defined
 - Word length, normalization, physical units, data rate, static reference values such as the gravitational constant are in the ICD but not necessarily on the bus
 - This may include Euler angles or quaternion, or both
 - Aerospace sequence, orbital element sequence, etc. must be defined in ICD
- Coordinates must be exchanged and updated
 - Different system functions use different coordinate systems
 - Underlying coordinates for most systems must be inertial

Lets Look at Position: Coordinates for a Radar

- Base system coordinate system is ECIC
- Local coordinate system is radar coordinates
 - Origin is at the antenna phase center
 - X is horizontal, to left looking out from radar
 - Y is vertical, parallel to antenna face
 - Z is normal to plane of antenna, out radar axis
 - Very natural for planar radar antenna arrays
 - Not an inertial coordinate system
- <u>u</u> is line-of-sight from radar to target
- Position is what is characterized by the quaternion

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

F-35 AESA photo By Daderot - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=34902920

Slide 47 of 59

The Variables

Solution Real Representation Relation R_{Target} , u_{Left} , u_{Up} , \dot{R}_{Target}

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 48 of 59

The State Vector <u>x</u> and the Measurements <u>y</u>

$$\underline{x} = \begin{bmatrix} \ln\left(\frac{R}{R_{0}}\right) \\ u_{Left} \\ u_{Up} \\ \frac{\dot{R}}{R} \\ \dot{u}_{Left} \\ \dot{u}_{Up} \end{bmatrix} \qquad \underline{y} = \begin{bmatrix} \frac{R}{R_{0}} \\ u_{Left} \\ u_{Up} \\ \frac{\dot{R}}{R} \\ \dot{u}_{Left} \\ \dot{u}_{Up} \end{bmatrix} \qquad H = \frac{\partial y}{\partial \underline{x}} = \begin{bmatrix} \frac{R}{R_{0}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

H is the Sensitivity Matrix

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 49 of 59

State Transition Matrix

General form

$$\Phi(\tau,t) = \frac{\partial \underline{x}(t+\tau)}{\partial \underline{x}(t)} \approx \begin{bmatrix} 1 & 0 & 0 & \tau & 0 & 0 \\ 0 & 1 & 0 & 0 & \tau & 0 \\ 0 & 0 & 1 & 0 & 0 & \tau \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Actual exact form depends on target motion model

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 50 of 59

Consequences of Selection of States

Statistical efficiency

 Linear relationship between measurements and position states because measurements and position states, range rate state are the same as the measurements

Numerical efficiency

- Solution Section All Have matrices with unitless elements of same general magnitude $\tilde{x} = \Phi \cdot \hat{x}$
- Advantages accrue to
 - Joseph Stabilized Form
 - UDUT Square Root Filter
 - SRIF

$$\tilde{P} = \Phi \cdot P_{-} \cdot \Phi^{T} + Q, \quad P^{-1} = \tilde{P}^{-1} + H^{T} \cdot R^{-1} \cdot H$$

$$K = P \cdot H^T \cdot R^{-1}$$

$$\underline{\hat{x}} = \underline{\tilde{x}} + K \cdot \left(\underline{y} - \underline{h}(\underline{\tilde{x}})\right)$$

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 51 of 59

Kalman Filter Types

Joseph stabilized form (Gelb, pp 305-306)

$$\tilde{P} = \Phi \cdot P_{-} \cdot \Phi^{T} + Q, \quad K = \tilde{P} \cdot H^{T} \cdot \left(H \cdot \tilde{P} \cdot H^{T} + R\right)^{-1}$$

$$P = \left(I - K \cdot H\right) \cdot \tilde{P} \cdot \left(I - K \cdot H\right)^{T} + K \cdot R \cdot K^{T}$$

- UDUT Factorization
 - Ses "square root" of covariance matrix
 U · D · U^T = P, U upper triangular w/1s on diagonal, D diagonal
 Nearly a drop-in upgrade for Joseph stabilized form
- Square root information filter (SRIF)

Square Root Information Filter

- Works with a Cholesky factorization of inverse of covariance matrix
- Most number crunching is done using Householder reflections
 - Left-multiplication by Householder reflections, matrices of the form

 $T = I - 2 \cdot \underline{u} \cdot \underline{u}^{T}$

- Well known for excellent numerical properties
- Accuracy and numerical advantages when
 - Best model at start is initialization with "infinite variance" of unobservable states
 - One or more states is poorly observed for several update periods at the beginning of track
 - Anytime one or more states are carried along without observability
 - Huge numbers of data points are used in updates (rare in radar trackers)

The Subtleties of Tracking Suborbital Objects

Target position updates

- Atmospheric object target motion model and updates in ECEF
- Exoatmospheric object target motion model and updates updates in ECIC
- Some use custom updates
 - Fast-rising missiles exhibit Coriolis from ECEF rotation
 - High exoatmospheric objects need custom dynamic modeling
- ECEF rotates with time and must be periodically updated
 - Long wait times without updates in ECEF result in gravity "down" rotating 15 degrees an hour
 - This resulted in Patriot missiles missing a Scud in first Iraq war

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 54 of 59

Examples

Mathcad simulation of ICBM payload re-entry cone

- Mathcad Program (<u>start</u>)
- Empty cone (<u>start</u>)
- Empty with radar fuze window (start)
- With warhead mass and radar fuze window (start)

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

Slide 55 of 59

References

- Jack B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press (1999)
 - Hardcover ISBN 0-691-05872-5
 - Paperback ISBN 0691102988, ISBN-13: 978-0691102986
- Karsten Kunze, Helmut Schaeben (November 2004). "The Bingham Distribution of Quaternions and Its Spherical Radon Transform in Texture Analysis". Mathematical Geology. 8 (8): 917–943. doi:10.1023/B:MATG.0000048799.56445.59.
- G. Minkler and J. Minkler, Aerospace Coordinate Systems, Magellan (1990) ISBN 0-9621618-0-2

References (Continued)

- Bate, Mueller and White, Fundamentals of Astrodynamics, Dover (1971) ISBN 0-486-60061-0
- David A. Vallado, Astrodynamics and Applications, McGraw-Hill (1997) ISBN 0-07-066834-5 (paperback) 0-07-066829-9 (hardcover)
- John Horton Conway and Derek Smith, On Quaternions and Octonions. A K Peters/CRC Press (2003), ISBN-10: 1568811349, ISBN-13: 978-1568811345
- Arthur Sherburne Hardy, *Elements of Quaternions*, Ginn, Heath & Co. (1881), Reprint by Palala Press (May 20, 2016), ISBN-10: 1357939795, ISBN-13: 978-1357939793

References (Continued)

- Gerald J. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic Press (1977) ISBN 0-12-097350-2, Elsevier Hardcover ISBN: 9780120973507, eBook ISBN: 9780080956374
- James K Beard, 6DOF_Quaternions.xmcd, Report with executable spreadsheet with analyses and simulations, (1987-2001, 2017), available on http://jameskbeard.com/jameskbeard/Files.html#quaternions
- James K Beard, Engineering Applications of Quaternions, referred to in Mathcad file as EAOQ, unpublished report (1987, reformatted 2001), available on web site at the same page.

References (Continued)

- D.H. Platus. Ballistic Re-entry Vehicle Flight Dynamics, Journal of Guidance, Control, and Dynamics, Vol. 5, No. 1 (1982), pp. 4-16.
- A. Gelb, Ed., Applied Optimal Estimation, MIT Press (1974), ISBN-10: 0262200279, ISBN-13: 978-0262200271 (hardcover), ISBN-10: 0262570483, ISBN-13: 978-0262570480 (paperback)

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017