Contents

Dedication v
Author xiii
Preface xv
Foreword xvii
The Fourier Transform 1

1. Overview 1
2. Conventions and Notations 1
2.1 Complex Variables and the Complex Conjugate 2
2.2 VECTORS AND MATRICES 2
2.3 Matrix Transpose and Hermitian 3
2.4 COMMON FUNCTIONS 3
3. The Fourier Transform 4
3.1 THE CLASSICAL FOURIER TRANSFORM 4
3.2 OUR First Encounter with the Dirac Delta Function 4
3.3 MEANING, USEFULNESS, AND LIMITATIONS OF FORMALIDENTITIES6
3.4 THE INVERSE FOURIER TRANSFORM 6
3.5 Parseval's Theorem 7
3.6 MULTIVARIATE FOURIER TRANSFORMS 8
3.6.1 Two-Dimensional Fourier Transforms 8
3.6.2 Three and More Dimensions 10
3.7 FOURIER TRANSFORM PAIRS 13
3.8 The Hilbert Transform 14
4. The Classical Fourier series 16
4.1 The Fourier Series 16
4.2 Parseval's Theorem 17
5. The Discrete Fourier Transform 17
5.1 THE TRANSFORM - A TRIGONOMETRIC IDENTITY 17
5.2 Parseval's Theorem 18
5.3 THE DIRICHLET KERNEL 18
5.4 DFT PAIRS 19
6. Gibb's Phenomenon 20
7. Spatial and Matrix Representations and Interpretations 22
7.1 The CONTINUOUS FOURIER TRANSFORM 22
7.1.1 In Engineering and Physics 22
7.1.2 In Mathematics 24
7.2 THE CLASSICAL FOURIER SERIES 25
7.3 The Discrete Fourier Transform 26
7.3.1 Filtering and Inverse Transforming 26
7.3.2 Properties of the DFT and Fourier Matrices 27
8. Problems 30
8.1 GENERAL 30
8.2 CLASSICAL FOURIER TRANSFORM 30
8.3 CLASSICAL FOURIER SERIES 31
8.4 DISCRETE FOURIER TRANSFORM 31
8.5 Greater Time and Difficulty 31
8.6 PROJECT 31
Introduction to the Radix 2 FFT 33
9. Historical Note 33
10. Notations and Conventions 33
11. Ordering the Bits in the Addresses 34
12. Examples 35
4.1 Simple DIF AND DIT 35
4.2 MULTIVARIATE FFT 38
13. Problems 50
5.1 GENERAL 50
5.2 GREATER DIFFICULTY 51
5.3 Project 51
The Reordering Problem and its Solutions 53
14. Introduction 53
15. Different types of Cooley-Tukey FFTs 55
16. In-place, self reordering FFTs 56
17. Conclusions 60
4.1 SUMMARY 60
4.2 EXECUTION SPEEDS 61
4.3 VARIABLE RADIX ALGORITHMS 62
4.4 MULTIVARIATE FFTs 62
18. Examples 63
19. Problems 80
6.1 GENERAL 80
6.2 GREATER DIFFICULTY 81
6.3 PROJECT 81
Spectral Window Weightings 83
20. Overview 83
1.1 B ASE CONCEPTS - THE DFT TRADE SPACE 83
1.2 CONTINUOUS AND DISCRETE SpECTRAL WINDOWS 85
1.3 Sampled Continuous Spectral Windows 85
1.4 NoISE BANDWIDTH 86
1.5 ARRAY EFFICIENCY 87
1.6 Spectral Window Frequency Response 87
21. Discrete Spectral Windows 89
2.1 The DOLPH-ChEBYChEV Window 89
2.2 Chebychev 2 Window 98
2.3 Split Chebychev 2 Window for Monopulse 107
2.4 Finite Impulse Response Filters 112
22. Continuous Spectral Windows and Sampled Continuous Windows 1133.1 SAMPLED CONTINUOUS WINDOW FUNCTIONS AS DISCRETEWindows113
3.2 Cosine Windows 113
3.2.1 Bartlett and Hanning 113
3.2.2 Placing Zeros: Hamming, Blackman, and Harris Windows 114
3.2.3 A Fifth Cosine for 118 dB Performance 116
3.2.4 Cosine to a Power 130
3.3 CONTINUOUS EXTENSIONS OF THE DOLPH-CHEBYCHEV WINDOW 131
3.3.1 Base Continuous Dolph-Chebychev Window 131
3.3.2 The Kaiser Window 141
3.3.3 The Taylor Window 146
23. Two-Dimensional Window Weightings 159
4.1 PLANAR RADAR ANTENNAS AND Two-DIMENSIONAL DFTs 1 159
4.2 THE Two-DIMENSIONAL DOLPH-CHEBYCHEV WEIGHTING 162
4.3 Two-Dimensional Chebychev 2 Window 171
4.4 Monopulse with Split Two-Dimensional Chebychev 2178
4.5 LIMITING FORM OF THE Two-DIMENSIONAL CHEBYCHEVWINDOWS FOR LARGE N181
4.6 Two-Dimensional Taylor Weighting 183
4.7 LAMBDA Functions and a Unified Theory 199
4.8 MONOPULSE WITH THE BAYLISS WINDOW WEIGHTS 200
24. Three and More Dimensions 203
5.1 CHEBYCHEV 204
25. Linear Programming Window Function Design 204
26. Conclusions 205
7.1 One-Dimensional Weightings 205
7.2 Two-Dimensional Weightings 206
7.3 Three and Higher Dimensions 207
27. Problems 207
8.1 GENERAL 207
8.2 GREATER DIFFICULTY 207
8.3 CHEBYCHEV WINDOWS 208
8.4 Cosine Windows 208
8.5 BESSEL WINDOWS 209
8.6 TWO-DIMENSIONAL WINDOWS 209
8.7 GREATER TIME AND DIFFICULTY 209
8.8 PROJECT 209
Acknowledgments 211
References 213
Index 219

$$
\begin{align*}
a f g_{k}= & \frac{1}{N^{2}} \cdot \sum_{i=0}^{N-1} \sum_{p=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a f_{m} \cdot a g_{n}^{*} \tag{3.56}\\
& \cdot \exp \left(-j \cdot \frac{2 \pi}{N} \cdot(i \cdot k-p \cdot m+(p-i) \cdot n)\right)
\end{align*}
$$

Summation on i is possible because only complex exponentials are involved, and the result is a Dirichlet kernel, which is effectively a Kronecker delta scaled by N, or $N \cdot \delta_{k, n}$. This allows summation on n as well, with the only nonzero term on summation on n being the one for $n=k$. The result is

$$
\begin{equation*}
a f g_{k}=\frac{1}{N} \cdot \sum_{p=0}^{N-1} \sum_{m=0}^{N-1} a f_{m} \cdot a g_{k}^{*} \cdot \exp \left(-j \cdot \frac{2 \pi}{N} \cdot p \cdot(-m+k)\right) \tag{3.57}
\end{equation*}
$$

We can now sum on p and find another Dirichlet kernel, then sum on m to find

$$
\begin{equation*}
a f g_{k}=a f_{k} \cdot a g_{k}^{*} \tag{3.58}
\end{equation*}
$$

These and other results are summarized below as Table 2.

Table 1-2. DFT/FFT Transform Pairs

x_{i}	$a_{k}=\sum_{i=0}^{N-1} x_{i} \cdot \exp \left(-j \cdot \frac{2 \pi}{N} \cdot i \cdot k\right)$	Remarks
a_{k}	$N \cdot x_{N-k}$	Double transform
$\sum_{p=0}^{N-1} f_{p} \cdot g_{i-p}^{*}$	$a f_{k} \cdot a g_{k}^{*}$	Convolution, crosscorrelation
$\sum_{p=0}^{N-1} f_{p} \cdot f_{i-p}^{*}$	$\left\|a_{k}\right\|^{2}$	Autocorrelation, Energy spectrum
$f_{i} \cdot g_{i}^{*}$	$\frac{1}{N} \cdot \sum_{p=0}^{N-1} a f_{p} \cdot a g_{p-k}^{*}$	Multiplication, Convolution
$\delta_{i, p}$	$\exp \left(-j \cdot \frac{2 \pi}{N} \cdot p \cdot k\right)$	Kronecker delta
$\exp \left(+j \frac{2 \pi}{N} \cdot i \cdot s\right)$	$\frac{\sin (\pi \cdot(k-s))}{\sin \left(\frac{\pi}{N} \cdot(k-s)\right)} \cdot \exp \left(-j \cdot \frac{\pi \cdot(N-1)}{N} \cdot(k-s)\right)$	Dirichlet kernel

6. GIBB'S PHENOMENON

Gibb's phenomenon is the behavior of an inverse Fourier transform, Fourier series, or DFT near a step discontinuity. For the Fourier transform, we see it when we look at the Fourier transform of the step function. For the Fourier transform, we come upon it looking at the unit step function in time,

Table 1-2. DFT/FFT Transform Pairs

x_{i}	$a_{k}=\sum_{i=0}^{N-1} x_{i} \cdot \exp \left(-j \cdot \frac{2 \pi}{N} \cdot i \cdot k\right)$	Remarks
a_{k}	$N \cdot x_{N-k}$	Double transform
$\sum_{p=0}^{N-1} f_{p} \cdot g_{i-p}^{*}$	$a f_{k} \cdot a g_{k}^{*}$	Convolution, crosscorrelation
$\sum_{p=0}^{N-1} f_{p} \cdot f_{i-p}^{*}$	$\left\|a_{k}\right\|^{2}$	Autocorrelation, Energy spectrum
$f_{i} \cdot g_{i}^{*}$	$\frac{1}{N} \cdot \sum_{p=0}^{N-1} a f_{p} \cdot a g_{p-k}^{*}$	Multiplication, Convolution
$\delta_{i, p}$	$\exp \left(-j \cdot \frac{2 \pi}{N} \cdot p \cdot k\right)$	Kronecker delta
$\exp \left(+j \frac{2 \pi}{N} \cdot i \cdot s\right)$	$\frac{\sin (\pi \cdot(k-s))}{\sin \left(\frac{\pi}{N} \cdot(k-s)\right)}$	Dirichlet kernel
	$\cdot \exp \left(-j \cdot \frac{\pi \cdot(N-1)}{N} \cdot(k-s)\right)$	

Note that our normalization of A differs from that of Taylor's paper for consistency with other paragraphs here. The number of "equiripple" sidelobes n must be large enough so that the broadening factor σ is greater than one because the factor of σ applies to the main lobe, and adding rolloff to the sidelobes cannot decrease main lobe width. Also, \bar{n} must be large enough so that σ decreases with increasing \bar{n}, because increasing the bandwidth over which the sidelobes are equiripple must decrease the main lobe width. This condition,

$$
\begin{equation*}
\bar{n} \geq \frac{1}{2} \cdot\left(4 \cdot\left(\frac{A}{\pi}\right)^{2}+1\right) \tag{3.41}
\end{equation*}
$$

is a hard limit on applicability - the frequency response of the Taylor window does resemble its desired shape when this condition is met, and the sidelobe structure is less clearly related to the design intent when this condition is violated. The minimax principle shows that, as Taylor stated in his original paper ${ }^{50}$, the first \bar{n} sidelobes cannot be down as far as designed unless σ is greater than one, which can only be true when Equation (3.41) is satisfied.

We examine σ as a function of \bar{n}, in the abstract. The broadening factor σ is zero for \bar{n} equal to zero, reaches a peak greater than one at the value given as the threshold in Equation (3.41), and decreases to an asymptote of one as \bar{n} increases past that of the threshold value. This peak value is

$$
\begin{equation*}
\sigma_{M A X}=\sqrt{1+\frac{1}{4 \cdot\left(\frac{A}{\pi}\right)^{2}}} \tag{3.42}
\end{equation*}
$$

which will be near one when A is large, that is to say when S is very large. Furthermore, decrease of σ as \bar{n} increases above the threshold value will be quite slow. Since the sidelobes of the frequency response are observed to be essentially as designed when Equation (3.41) is satisfied, practical designs are obtained by simply rounding up from the threshold value, or perhaps adding one or two to the threshold value before rounding. Increasing \bar{n} much beyond that which is required to obtain the sidelobe heights will provide the frequency response shape according to the theory, but the behavior of the weighting function will begin to show artifacts such as peaking at the edges.

The frequency response of the Taylor window is

$$
a b_{k}\left\{\begin{array}{l}
=\frac{\left(\mu_{k+1}^{\prime}\right)^{2}}{J_{1}\left(\pi \cdot \mu_{k+1}^{\prime}\right)} \cdot \frac{\prod_{n=1}^{\bar{n}-1}\left(1-\left(\frac{\mu_{k+1}^{\prime}}{\sigma \cdot \zeta_{k+1}}\right)^{2}\right)}{\prod_{\substack{n=0 \\
n \neq k}}^{\bar{n}-1}\left(1-\left(\frac{\mu_{k+1}^{\prime}}{\mu_{n+1}^{\prime}}\right)^{2}\right)}, 0 \leq k<\bar{n} \tag{4.54}\\
=0, k \geq \bar{n}
\end{array}\right.
$$

and the weighting function itself is given by

$$
\begin{equation*}
w s(u s x, u s y)=C \cdot u s x \cdot \sum_{k=0}^{\bar{n}-1} a b_{k} \cdot J_{1}(\pi \cdot u s) \tag{4.55}
\end{equation*}
$$

where $u s x$, usy, and us are related to array coordinates according to Equation (4.9).

5. THREE AND MORE DIMENSIONS

First we note that the algorithms given in Chapter 3 will work in up to seven dimensions, the limit being on the number of subscripts allowable in FORTRAN. Extension of these FFTs to even higher numbers of dimensions is a trivial task, but is not deemed necessary at this time because requirements for eight or more dimensions is nonexistent for the time being, a user is likely to use his own code and quite possibly in another language, and eight dimensions with 16 points each is 4 billion complex data points, meaning that a data array using 32 -bit floating point would occupy 32 gigabytes. Although problems of this size are not unheard of and will likely become important in the foreseeable future, limiting indices to 16 is not a good decision for most important problems. In summary, the examples in Chapter 3 will work as-is, at least for a first cut, for nearly all important problems - and they provide a basis for construction of user algorithms.

Applications using three or more dimensions include boundary value problems, synthetic aperture radar autofocus and mosaicing, true time-delay beamforming, and multiple preformed beams in sparse interferometry.

The Fourier-Bessel integral for spherically symmetric functions in K dimensions is, from Chapter 1,

$$
\begin{equation*}
F(\rho)=\frac{2 \cdot \pi^{\frac{K}{2}}}{\Gamma\left(\frac{N}{2}\right)} \cdot \int_{0}^{R} f(r) \cdot J_{0}(r \cdot \rho) \cdot r^{K-1} \cdot d r \tag{4.56}
\end{equation*}
$$

28. Measurement of Power Spectra (From the Point of View of Communications Engineering), R. B. Blackman and J. W. Tukey, Dover (1958), ISBN 0486605078. Originally published in the January and March 1958 issues of BSTJ.
29. Antenna Engineering Handbook, Second Edition, Richard C. Johnson and Henry Jasik, McGraw-Hill (1984), ISBN 0-07-032291-0, page 1-6.
30. C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beamwidth and Side Lobe Level," Proceedings of the IRE, volume 34, pages 335-348, June 1946.
31. Abramowitz \& Stegun, loc. cit., paragraph 22.3.15, page 776.
32. Dolph, loc. cit.
33. Abramowitz \& Stegun, loc. cit., paragraph 22.3.16, page 776.
34. T. W. Parks and J. H. McClellan, "Chebychev Approximation for Nonrecursive Digital Filters with Linear Phase," IEEE Transactions on Circuit Theory, CT-19, pp 189-194, March 1972.
35. Theory and Application of Digital Signal Processing, Lawrence R. Rabiner and Bernard Gold, Prentice-Hall (1975), ISBN 0879420170. FIR filters are treated in Chapters 2 and 3, and the FORTRAN program implementing Remez exchange method of FIR filter design by Parks \& McClellan is given on pages 187-204.
36. Parks and McClellan, loc. cit.
37. J. H. McClellan, T. W. Parks, and L. R. Rabiner, "A Computer Program for Designing Optimum FIR Linear Phase Digital Filters," IEEE Transactions on Audio and Electroacoustics, AU-21, No. 6, pp 506-526, December 1973.
38. E. Ya Remez, "General Computational Methods of Chebychev Approximation," Atomic Energy Translation 4491, Kiev, 1957.
39. Rabiner and Gold, loc, cit., pp 137-138.
40. Fred J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proceedings of the IEEE, January 1977 (expanded from NUC/San Diego State University report under the title "Windows, Harmonic Analysis and the Discrete Fourier Transform," August, 1976), work supported under U.S. Navy research grant.
41. M. S. Bartlett, "Periodogram Analysis and Continuous Spectra," Biometrika, vol. 37, pp. 1-16, 1950.
42. The Hanning or simple cosine window is attributed to, and named after, the Austrian meteorologist Julius von Hann.
43. R. W. Hamming and J. W. Tukey, "Measuring Noise Color," unpublished memorandum referenced in Blackman and Tukey, loc. cit., as attribution for the Hamming window.
