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Summation on i  is possible because only complex exponentials are 
involved, and the result is a Dirichlet kernel, which is effectively a 
Kronecker delta scaled by N , or ,k nN δ⋅ .  This allows summation on n  as 

well, with the only nonzero term on summation on n  being the one for 
n k= .  The result is 
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We can now sum on p  and find another Dirichlet kernel, then sum on 
m  to find 

 *
k k kafg af ag= ⋅ . (3.58) 

These and other results are summarized below as Table 2. 
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Dirichlet kernel 

6. GIBB’S PHENOMENON 

Gibb’s phenomenon is the behavior of an inverse Fourier transform, 
Fourier series, or DFT near a step discontinuity.  For the Fourier transform, 
we see it when we look at the Fourier transform of the step function.  For the 
Fourier transform, we come upon it looking at the unit step function in time, 
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Note that our normalization of A  differs from that of Taylor’s paper for 
consistency with other paragraphs here.  The number of “equiripple” 
sidelobes n  must be large enough so that the broadening factor σ  is greater 
than one because the factor of σ  applies to the main lobe, and adding rolloff 

to the sidelobes cannot decrease main lobe width.  Also, n  must be large 

enough so that σ  decreases with increasing n , because increasing the 
bandwidth over which the sidelobes are equiripple must decrease the main 
lobe width.  This condition, 
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is a hard limit on applicability – the frequency response of the Taylor 
window does resemble its desired shape when this condition is met, and the 
sidelobe structure is less clearly related to the design intent when this 
condition is violated.  The minimax principle shows that, as Taylor stated in 
his original paper50, the first n  sidelobes cannot be down as far as designed 
unless σ  is greater than one, which can only be true when Equation (3.41) 
is satisfied. 

We examine σ  as a function of n , in the abstract. The broadening factor 

σ  is zero for n  equal to zero, reaches a peak greater than one at the value 
given as the threshold in Equation (3.41), and decreases to an asymptote of 
one as n  increases past that of the threshold value.  This peak value is 
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which will be near one when A is large, that is to say when S is very 
large.  Furthermore, decrease of σ  as n  increases above the threshold value 
will be quite slow.  Since the sidelobes of the frequency response are 
observed to be essentially as designed when Equation (3.41) is satisfied, 
practical designs are obtained by simply rounding up from the threshold 
value, or perhaps adding one or two to the threshold value before rounding.  
Increasing n  much beyond that which is required to obtain the sidelobe 
heights will provide the frequency response shape according to the theory, 
but the behavior of the weighting function will begin to show artifacts such 
as peaking at the edges. 

The frequency response of the Taylor window is 
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and the weighting function itself is given by 
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where usx , usy , and us  are related to array coordinates according to 
Equation (4.9). 

5. THREE AND MORE DIMENSIONS 

First we note that the algorithms given in Chapter 3 will work in up to 
seven dimensions, the limit being on the number of subscripts allowable in 
FORTRAN.  Extension of these FFTs to even higher numbers of dimensions 
is a trivial task, but is not deemed necessary at this time because 
requirements for eight or more dimensions is nonexistent for the time being, 
a user is likely to use his own code and quite possibly in another language, 
and eight dimensions with 16 points each is 4 billion complex data points, 
meaning that a data array using 32-bit floating point would occupy 32 
gigabytes.  Although problems of this size are not unheard of and will likely 
become important in the foreseeable future, limiting indices to 16 is not a 
good decision for most important problems.  In summary, the examples in 
Chapter 3 will work as-is, at least for a first cut, for nearly all important 
problems – and they provide a basis for construction of user algorithms. 

Applications using three or more dimensions include boundary value 
problems, synthetic aperture radar autofocus and mosaicing, true time-delay 
beamforming, and multiple preformed beams in sparse interferometry. 

 
The Fourier-Bessel integral for spherically symmetric functions in K  

dimensions is, from Chapter 1, 
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