

Physics, Chemistry, and Mathematics of Photography

James K Beard Part I of II, February 26, 2003 jkbeard@jameskbeard.com

jkbeard@ieee.org

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

Topics

- Part I: Resolution
 - On the film
 - On the print
 - On the slides
 - In television
- Part II: Color, shading, and prints
 - Contrast, color, and the Zone System
 - Lens design
 - Digital and conventional photography
 - The portal: scanning and scanners

Optical Fourier Transform

Optical Fourier Transform

- Collimated monochromatic impinging light
- Mask modulates light intensity
- Lens makes all effective path lengths to focal point equal

• Light at focal point is

$$a(\rho,\varphi) = \int_{0}^{\frac{D_0}{2}} \int_{-\pi}^{\pi} m(r,\theta) \cdot \exp\left(-j \cdot \frac{2\pi}{\lambda} \cdot r \cdot \rho \cdot \cos\left(\theta - \varphi\right)\right) \cdot r \cdot dr \cdot d\theta$$
Electro-Optical Systems Analysis,"
K. Seyrafi, p 174-177

 $r, \theta \leftrightarrow$ Lens Plane; r is distance

 $\rho, \varphi \leftrightarrow$ Fourier Plane; ρ is half-cone angle

The Airy Disk

- An open, uniformly weighted circular aperture of diameter D₀
- Intensity on the Fourier plane is

$$a(\rho) = \frac{\pi \cdot D_0^2}{4} \cdot \frac{2 \cdot J_1\left(\frac{\pi \cdot D_0 \cdot \rho}{\lambda}\right)}{\frac{\pi \cdot D_0 \cdot \rho}{2}}$$

"Electro-Optical Systems Analysis," K. Seyrafi, p 174-177

• Resolution is peak-to-null distance

$$\Delta \rho = \frac{1.22 \cdot \lambda}{D_0}$$

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

The Diffraction Limit on the Focal Plane

- The f/stop or f-number is $(f/no) = \frac{f}{D_0}$
- The numerical aperture for a lens is $NA = n' \cdot \sin(u') = \frac{1}{2 \cdot (f / no)}$
- Resolution distance is

$$n'$$
 = refractive index
 u' = half-cone angle

$$\Delta \rho \cdot f = 1.22 \cdot (f / no) \cdot \lambda = \frac{0.61 \cdot \lambda}{NA}$$

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

Lines per Millimeter

- A resolvable line is two resolution elements
 - Two lines must have a resolvable space between them
 - The distance between the line and the resolvable space is a resolvable element
- The number of lines per millimeter is $lpmm = \frac{1}{2 \cdot \Delta \rho \cdot f} = \frac{1}{2.44 \cdot (f/no) \cdot \lambda} = \frac{NA}{1.22 \cdot \lambda}$

Resolution on 35 mm Film

- Film resolution is 80 to 200 lines per mm
- Optics limit
 - Diffraction limit is about 133 lines per mm at f/5.6
 - Achieved in laboratory: 80 to 100 lines per mm
 - Achieved by the photographer: 40-80 lines per mm

Practical limit is 40 – 80 lines per mm

Resolution on 70 mm Film

- Film resolution is 80 to 200 lines per mm
- Optics limit
 - Diffraction limit is about 65 lines per mm at f/11
 - Achieved in laboratory: 45 to 80 lines per mm
 - Achieved by the photographer: 25-50 lines
 per mm

Practical limit is 25 – 50 lines per mm

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

Number of Pixels

- In 35 mm film
 - Image is 24 mm by 36 mm
 - 4 X 3 aspect limit is 24 mm X 32 mm
 - -4.7 M at 40 lines per mm (M = 1024² pixels)
 - 18.75 M at 80 lines per mm
- In 70 mm film
 - Image is 6 X 7 cm
 - 22.4 M in 5.25 X 7 cm at 40 lines per mm

Print Resolution

- Eye is about a 24 mm focal length
- F-stop of pupil is f/2.8 to f/32
 - Typical pupil is f/11 in bright light
 - Eye resolution is 0.3 milliradians for green light
- Print resolution
 - At two feet viewing distance
 - About 144 dots per inch

Print Resolution vs. Distance

MTE 2 February 26, 2003 Slide 14

Scanning Slides and Negatives

- Resolution
 - Scale factor from lines per mm to DPI

$$25.4\frac{mm}{in} \cdot 2\frac{dots}{line} = 50.8\frac{dots / in}{line / mm}$$

- 80 line per mm is 4000 DPI
- Vendors of slide/negative scanners
 - SmartDisk: 2700 or 3600 DPI
 - Nikon Coolscan, Canoscan, Microtek, Polaroid: 4000 DPI
 - Minolta Dimage: 2820, 4800 DPI

NTSC Color TV

- RGB is encoded for transmission
 - Illuminance, weighted combination
 - I and Q channels to carry color
 - Signal is compatible with pre-color TV
- Resolution
 - Limited by channel bandwidth to 220 lines
 - Color is less; relationship is complex

The Encoding Matrix

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

NTSC Summary

- Resolution
 - Limited by TV channel bandwidth
 - About 200 by 480
 - Color is less bandwidth complex relationship
 - Eye sees 200 by 480
 - Frame averaging with motion enhances perception
- Color
 - Purity and quality are not a problem
 - Blue is lower resolution than red, green

HDTV

- Information given here is from
 - <u>http://www.ee.washington.edu/conselec</u> /CE/kuhn/hdtv/95x5.htm
- Aspect ratio remains 16:9
- Resolution either of
 - 1280 X 720 (1 MPX)
 - 1920 X 1080 (2 MPX)

Field of View

Format	Field of View, Degrees
TV	6.5
HDTV 1	20
HDTV 2	30
35 mm	104

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

Viewing Image Size vs. Distance

MTE 2 February 26, 2003 Slide 23

Viewing Image Size vs. Distance

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

MTE 2 February 26, 2003 Slide 24

Comparing Digital and 35 mm Focal Plane Resolution

MTE 2 February 26, 2003 Slide 25

References

- HDTV
 - <u>http://www.ee.washington.edu/conselec/CE/ku</u>
 <u>hn/hdtv/95x5.htm</u>
- Foveon digital photography focal planes
 - <u>http://www.foveon.com/</u>
 - <u>http://www.sigma-photo.com/</u>
- Popular Photography Magazine
 - <u>http://www.popphoto.com/</u>

