James K Beard jkbeard@ieee.org; Rotational Dynamics of Rigid Bodies 3/31/2006

Rigid body rotational motion model using quaternions
Translational motion not treated

The conventions in this Mathcad worksheet follow "Quaternions and Rotation Sequences,"
Jack B. Kuipers, Princeton (1999) ISBN 0-691-05872-5
Occasional page numbers and equation numbers from this reference are cited.
This book has its own home page at
http://www.calvin.edu/~kprs/book/quaternions.html
Please note errata in this book from the HTML file reference on that page.
Reference is also made to "Engineering Applications of Quaternions,” bound 2001 release.

1.0 Elementary Quaternion Arithmetic

1.1 Conversions, Elementary Operations and Isomorphisms, Quaternion Multiplication

; 0
0 " Yo
r2q(r) = g2v(q) =1 9, v2q(v) = v Real and vector conversions
0 1
0 93
.
%
qconj(q) := —a, Quaternion conjugate
90 % 93 9
g2M(q) = Matrix isomorphism, EAOQ Eg. 14

92 95 9% 9
93 ~92 9 9
gprod(ql,q2) := r2q(q10- 42, - 92v(ql) q2v(q2)> + VZq(qlo- 42v(42) + 62, - 42v(ql) j Product q1*q2
+02v(ql) x q2v(a2) EAOQ Eq. 3
ly- a2y - aly - 42 — ql, - 62, — ql;- 62,
gprod(al, q2) qlo. q21 ' qll. q20 ' qlz. q23 ) q13' q22 Fast inline form (Kuipers Eq
rod(ql,q2) := .
9ly- 92, - ql; - 925+ ql,- 92 + ql,- q2) 7.1 p. 156)
q10~ q23 + q11~ q22 - q12~ q21 + q13~ q2O
qvprod(q,Vv) = —r2q(q2v(q) - v) + v2q(qO -V + g2v(q) x v) Product g*v
U Vo~ Vi3V,
G0 VoT U2 V2 93" Vg
gvprod(q, v) = Fast inline form
Go- Vi~ V2" 9 Yy

o Vot Ve~ Uy VY
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1.2 Skew symmetric and subspace operators, symmetric and skew symmetric matrix
components

2 1
Skewsy(v) := | V, 0 -V, EAOQ Eq. 27
v, VY 0
vov
Subsp(v) := identity(length(v)) - —— EAOQ Eq. 38
V-V

Symm(M) = 5- (M + MT) Antisymm(M) := .5 - (M - MT) Symmetrical & anti symmetrical
parts of matrices
1

Vector from skew symmetrical matrix, from EAOQ Eq. 27
Skewsy2v(S) := | S 5 y QEq

S1,0
S2, 1 S1,2
Skewsy2v(S) = % 50’2 - 52,0 Vector from skew symmetrical part of matrix
51,0 - So, 1
— (q.) 2 2 2 Norm of g, EAOQ Eq. 7
an(a) := ()" + (aq)" + (95) + (3g) orm of g, EAOQ Eq.

1.3 Quaternion Rotation, Rotation Matrix, and Conversions
1.3.1 The Aerospace Sequence
What are we rotating and why?

Unless otherwise noted, we are looking at a point or vector from the perspective of a reference
coordinate system and finding its coordinates in our reference frame. This is done

beginning with its coordinates in a rotated coordinate frame such as a ship coordinate system,
and rotating it with the coordinate system.

We have its components as stated in the rotated rotated frame, and rotate the vector to
our reference frame. Thus, we are rotating the vector

FROM its coordinates in the rotated frame

TO its coordinates in the reference frame.

When rotating a body or its coordinate frame from a reference or inertial frame to a rotating frame, the
sequence is yaw and heading v, then pitch and elevation y, then roll . All angles are positive about their
respective axes using the right hand rule.

Note that Kuipers uses 6 for pitch and o for rotation angle -- we use y for pitch and 6 for overall rotation
angle. See EAOQ Section 3.2.2 and Kuipers pp. 84 - 85.
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1.3.2 Rotations

Quaternion vector rotation g*v*(1/q)
g2v(gprod(qvprod(q,Vv),qconj(q))) EAOQ Eq. 77, Kuipers Eg. 5.5 p. 117
qn(q) See "First Perspective" at bottom
of page 123. We use 1/q instead of g*.

gprot(q,v) =

Rotation matrix from quaternion (EAOQ Eq. 98, Kuipers Eq. 5.9 p. 125)

Arot(q) = ﬁ . (q0)2 - (ql)2 - (q2)2 - (q3ﬂ - identity(3) ...

-
+2- g, - Skewsy(q2v(q)) + q2v(q) - q2v(q) )
When

A = cos(0/2) + sin(6/2)*u, A = cos(0)*l + sin(0)*S_u + 2*sin(6/2)"2*u*u T
= cos(0)*l + sin(0)*S_u + (1 - cos(0))*u*uT
= cos(0)*(I - u*u"T) + sin(0)*S_u + u*u™T
= U*unT + (cos(0) + sin(0)*S_u)*B_u

When examined as an operator on a vector v, the first term extracts the component of v along u and the
second term extracts the component of v normal to u (with the subspace operator B_u). The second
term rotates the component of v normal to u by an angle 0 counterclockwise looking out u -- i.e. by

the right hand rule, with the thumb pointing out along u and 0 positive in the direction that the fingers
curl.

Fast closed form (EAOQ Eqg. 98)
Kuipers Eqg. 5.11 p. 126 has a form that requires |g|=1

i A PR
AR = qnz(q) ' 4,0y + 0 g ()"~ 2 ; ()~ (s Gy 0y~ Gy 0,
O
Fast closed form quziltemion point rotation ]
() + (a)” : (o) - (o) o (00 0y 0 05) ¥y (849 + 05
ARI9Ya,V) = qnz(q) (g0 g+ 0g) v+ (q0)2 - (ql)z ; (q2)2 § (q3)2 v+ (dy 03— g Gg) Yy
- o gy

qprotx(q,v) := (qo)2 v+ [2-9p- (@2v() x V)] + 62v(a) ¥ (G2v(0) x V) + (v - 42v(q)) - G2v(q)
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Skewsy2v(A)

A2uaxis(A) :=
A | Skewsy2v(A)|

frotcore(A) := atan2(tr(A) — 1,2 |Skewsy2v(A)|)

Quaternion from rotation matrix

A2qrotcore(A) := qu(cos(erOtc+re(A)D + sin(erotc+re(A)j - V2q(A2uaxis(A))

NOTE that 6=r case is handled by A2grotx(A) and 0rotx(A) below

qtestA(A) := | Skewsy2v(A)|

max_A(A) := max(A A LA

0,0°" 1,1° 2,2)

index_A(A) := if(AO’O = max(A),o,if(AL1 = max(A),l,Z))

AO, index_A(A)

UPIA(A) := Al,index_A(A)
AZ, index_A(A)
. upiA(A)
qpi(A) := v2q(.—)
|upiA(A) |
deltaA == 107 °

Rotational Dynamics of Rigid Bodies

3/31/2006

Rotation axis from rotation matrix,
EAOQ Eq. 113

Rotation angle from rotation matrix,
EAOQ Eq. 114, 2cos(0) from Kuipers,
3.4p.57

EAOQ Eq. 90

Test quantity to check for 6=n

Finds largest diagonal element of A

Finds index of largest diagonal element of A

Column with largest diagonal element

Quaternion if 0=x is unit vector along axis
of rotation

Lowest value of 8 in radians before
special case is taken

A2qrot(A) := if (qtestA(A) > deltaA, A2grotcore(A), qpi(A))

orotx(A) = if(qtestA(A) > deltaA,erotcore(A),rc)

1.4 Euler Angles, Quaternion from Euler angles

Euler angles are rotation angles about axes of the current coordinate frame, taken one at a time.

1.4.1 The Aerospace Sequence (zyx)

The Aerospace Euler angle sequence is rotation from a reference coordinate system to a rotated frame by
rotating about the axes in the order z, y, then x. If the reference frame is a North-East-down Cartesian
coordinate frame, this is rotation in azimuth and yaw, positive North to East, then elevation and pitch, positive
upward, and last roll, positve right wing or starboard side down.

First, we will find the components of the rotation quaternion from the Euler angles.
Rotation is from North-East-Down to bow-starboard-keel

Roll positive right side down
cos(gj
2
sin(ij
2
0
0

)

aroli(¢) := apitch(y) =

Copyright 1986-2001 by James K Beard

Pitch positive bow up

qyaw(\y) =

Page 4 of 34

Yaw positive bow to right

5

0
EAOQ Eq. 103
0

sin hd
2)
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eu2qn(¢,y,\p) = qprod(qroll(¢),qprod(qpitch(y),qyaw(\y))) Quaternion from Euler angles

o{) ofs) ofz) o (3) o
eu2q(6,y,vy) == (j [) ( )“305( )-sm
)] o) ()
o) o)) 1)

Rotation matrix NOTE: EAOQ Eq. 96, Kuipers Eq. 4.4 p. 86 or Eq. 7.17 p. 167 use DIFFERENT SIGNS
for the Euler angles

N =

r\)|~<

Point rotation
EAOQ Ex. 104

) Closed form,

NIR NI=R NIR N

;/;/;/
@,
>
77N /77 N /77 N /77N

Three dimensional matrices Coordinate systems: N-E-D to bow, starboard (right), keel
1 0 0
Aroll(¢) =10 cos(d)) —sin(¢) Roll, positive starboard down

0 sin(d)) cos(¢)

cos(y) 0 sin(y)
Apitch(y) = 0 1 0 Pitch, positive bow up

—sin(y) 0 cos(y)

cos(\y) —sin(\y) 0
Ayaw(y) := | sin(y) cos(y) 0 Yaw, positive bow to starboard
0 0 1
cos(y) - cos(y) —cos(y) - sinly) sin(y)

aA((I),Y,\u) = sin(¢) . sin(y) . cos(\y) + cos(q)) . sin(\y) —sin(q)) . sin(y) . sin(\y) + cos(q)) . cos(\y) —sin(q)) . cos(y)
—Cos(¢) . sin(y) . cos(\y) + sin(¢) . sin(\u) cos(d)) . sin(y) : sin(\u) + sin(¢) . cos(\y) cos(¢) . cos(y)

1.4.2 The Orbital Element Sequence (zxz)

The orbital element Euler angle sequence is rotation from a reference coordinate system to a rotated frame by
rotating about the axes in the order z, x, then again z. If the reference frame is an Earth centered inertial right
handed Cartesian coordinate frame with the z axis through the North pole and the x axis toward the vernal
equinox (Aries), this is rotation in latitude, positive East to the line of nodes (the latitude of the ascending node, or
the point above which the satellite passes through the equatorial plane Northbound), then inclination of the orbital
plane, positive Eastward half plane upward, and last true anomaly or angle from that point to the new x axis
positve Northward. These euler angles are denoted by Q, i, and v, respectively.

References for orbital element geometries:

Fundamentals of Astrodynamics, by Bate, Mueller and White, Dover, 1971, ISBN 0-486-60061-0 pp. 58-59..
Fundamentals of Astrodynamics and Applications, by David A. Vallado, McGraw-Hill, 1997, ISBN 0-07-066834-5
pp. 130-131. Also available in hardcover ISBN 0-07-066829-9.

This orbital angle sequence can also be used to represnt body rotation. It is less natural for this purpose
because incremental roll, pitch and yaw are complex in this Euler angle sequence but it is equivalent
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algebraically.

First, we will find the components of the rotation quaternion from the Euler angles.

Rotation from equatorial Rotation to inclination  Rotation to line of nodes
plane to orbital position of orbital plane toward ascending node

of3) of3) ()
g q_incl(i) := S"‘Gj q_tan(@) = g
49 ; 3)

eu29n!v,i,Q) = qprod(q_tan(v),qprod(q_incl(i),q_Ian(Q))) Quaternion from Euler angles

q_tan(v) =

euzszqpc(v , i,Q) =

Rotation matrix

Three dimensional matrices Coordinate systems: N-E-D to bow, starboard (right), keel
cos(Q) —sin(Q) 0
A_lan(Q) = | sin(Q) cos(Q) 0 Rotation to line of nodes toward ascending node
0 0 1
1 0 0
A_incl(i) :=| 0 cos(i) —sin(i) Rotation to inclination of orbital plane

0 sin(i) cos(i)

cos(v) —sin(v) 0
A_tan(v) := | sin(v) cos(v) © Rotation from equatorial plane to orbital position
0 0 1

cos(v) . cos(Q) - sin(v) - cos(i) - sin(Q) —cos(v) . sin(Q) - sin(v) - cos(i) - cos(Q) sin(v) - sin(i)
Az(v,i,Q) = sin(v) . cos(Q) + cos(v) - cos(i) - sin(Q) —sin(v) . sin(Q) + cos(v) - cos(i) cos(Q) —cos(v) sin(i)
sin(i) - sin(Q) sin(i) - Cos(Q) cos(i)
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1.5 Euler Angles from the Quaternion and Direction Cosines

)= atanz[(qo)z = (o)~ (0)" (g 2 (791~ 9 qsﬂ ROl B 100, Eq. 111
Kuipers, Sec.
7.8, p. 168,

q2y(q) = asin[z : (ql U3+ 0y qz)} Pitch errors corrected

q2y(q) := atanz[(qo)2 + (ql)z - (q2)2 - (q3)2,2 : (qo O3 —0p- qzﬂ vaw

A20(A) = atanZ(AZ’ 2 AL 2)

A2y(A) = asin(AO’ 2)

A2y(A) = atanZ(AO, e 1)

q2Q(q) = atan2(q2 "0y +0q- 03,0, O3~ Gy qZ) Argument of ascending node
q2i(q) := acos[(qo)2 - (ql)2 - (q2)2 + (qgﬂ Incliniation of orbital plane
G2v(0) = atan2(dy - 4y = G, g0y Gy + Gy~ Gy True anomaly

A2Q(A) = atanZ(AZ’ 1Ay, O)

A2i(A) = acos(Az’ 2)

A2v(A) = atan (-A); ,.Ay ] atan2(1,0.01754) = 1.004865 deg

1.6 Translating Between Aerospace and Orbital Euler Angles
as2v(¢,y) = atan2(sin(¢) - cosly),sin(y))
as2i(¢,v) = acos(cos(9) - cos(y))
as20(6,7,y) = atan2(cos(¢) - sin(y) - sin(y) + sin(¢) - cosly), —cos(¢) - sin(y) - cos(y) + sin(¢) - sin(y))
2x22¢(v i) := atan2(cos(i), cos(v) - sin(i))
2xz2y(v i) := asin(sin(v) - sin(i))

zsz\y(v,i,Q) = atanz(cos(v) . cos(Q) - sin(v) - cos(i) - sin(Q),cos(v) . sin(Q) + sin(v) - cos(i) - cos(Q))
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—cos(¢) . cos(y) . sin(y)

Rotational Dynamics of Rigid Bodies

sin(¢)

0
1- cos(¢)2 . cos(y)2 1- cos(¢)2~ cos(y)2 Jacobian @[v.. Y @[o.v]
: . vil, N
sacoel.) = sin(9) - cosly) cos(9) - siny) 0 Determinant is -cos(y)/sin(i)
’ \/ 1- cos(¢)2 . cos(y)2 \/ 1- cos(¢)2 . cos(y)2
sin(y) —cos(q)) . sin(q)) . cos(y) 1
1- COS(¢)2 . (:os(y)2 1- cos(¢)2~ cos(y)2
—sin(v) - cos(i) - sin(i) cos(v) 0
1-sin(v)? sin()? 1 - sin(v)? " sin(i)?
cos(v) - sin(i) sin(v) - cos(i) Jacobian @[¢,y,y)/@][v,i,Q]
Jaceo(v , i) = > > 0 Determinant is -sin(i)/cos(y)
\/1 —sin(v)* - sin(i)? \/1 —sin(v)* - sin(i)?
cos(i) —cos(v) . sin(v) - sin(i)
1-sin(v)? sin()? 1 - sin(v)? " sin(i)?

1.7 NUMERICAL EXAMPLES

phi := 33 - deg gam := —10 - deg
Q|an =21 deg iincl =22 deg
vwi=1 vy:=1 vz:i=1

VX
vVi=|wy

vz
qu := eu2q(phi, gam, psi)

Arq := Arot(qu)
Ar = eaA(phi,gam, psi)
Ar:= A2qrot(Ar)

Factors of the direction

1 0 0
Aroll(phi) = | 0 0.838671 —0.544639
0 0.544639 0.838671
0.984808 0 —-0.173648
Apitch(gam) = 0 1 0

0.173648 0 0.984808

Copyright 1986-2001 by James K Beard

Rsii= 42 - deg Euler angles for examples

Vianom = —240 - deg

Vector components for examples

Vector to be rotated

Rotation quaternion from closed form

Direction cosine rotation matrix from quaternion
Direction cosine rotation matrix from Euler angles
Quaternion from direction cosines

cosine matrix
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0.743145 —0.669131 0
Ayaw(psi) = | 0.669131 0.743145 0

0 0 1
0.95882 0.996195 0.93358
I1(phi) 0.284015 itch(gam) 0 (psi) 0 Factors of the
groll(phi) = gpitch(gam) = qyaw(psi) =
0 -0.087156 0 quaternion
0 0 0.358368
0.9006 0.9006
0.234195 0.234195
u= r= .
W= 170411 T=1 170411 Quaternion
0.319193 0.319193
0.9006
d(gprod(qgroll(phi), gpitch(gam)) (psi)) 0234135
ro ro ro 1), gpItC am)),gyaw(pst)) =
gprod(gprod(groll(phi), gpitch(gam)) , qyaw(p 0179411
0.319193

Direction cosine rotation matrix

0.731855 —-0.658965 -0.173648
Ar =1 0.490897 0.686537 —0.536365
0.472662 0.307298 0.825929

0.731855 -0.658965 —0.173648
Arg = | 0.490897 0.686537 —0.536365
0.472662 0.307298 0.825929

0.731855 -0.658965 -0.173648
Arot(qr) = | 0.490897 0.686537 —0.536365
0.472662 0.307298 0.825929

0.731855 -0.658965 —0.173648
Aroll(phi) - Apitch(gam) - Ayaw(psi) = | 0.490897 0.686537 —0.536365
0.472662 0.307298 0.825929

—-0.100758 —0.100758 -0.100758
Ar-v=| 0.641069 gprot(qu,v) = | 0.641069 gprotx(qu,v) = | 0.641069 Rotated vector
1.605889 1.605889 1.605889
g2¢(qr) = 33deg A2¢(Ar) = 33deg
q2y(qr) = —10deg A2y(Ar) = —10deg Euler angles from quaternion, direction cosines
g2y(qr) = 42deg A2y (Ar) = 42deg

Orbital Euler angle sequence
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gzXxz = eUZXZquC(VtanomaiincI:QIan) AzXz = AZ(Vtanom’iincl’Qlan)

-0.327674
—0.754547 -0.570448 0.324419 -1.000576
-0.123921
gzxz = 0.145002 Azxz = | 0.642368 -0.743156 0.187303 Azxz - v =| 0.086515
' 0.134247 0.349725 0.927184 1.411156
—0.925323
g2v(gzxz) = 120 deg g2i(gzxz) = 22 deg 02Q(qzxz) = 21deg Checks
A2v(Azxz) = 120 deg A2i(Azxz) = 22deg A2Q(Azxz) = 21deg
Ozxz = ZXZZ(I)(Vtanom’iincl) Yzxz = ZXZZY(Vtanomaiincl) Yzxz = ZXZZW(Vtanom:iincl’Qlan)
by, = —11.420796 deg Yzxz = 18.930368 deg W,y = 142.910205 deg
aSZV(d)zxz:szz) = 120 deg aSZi((I)ZXZsszz) = 22deg aSZQ(d)ZXZ’YZXZ’WZXZ) = 21deg
g2¢d(gzxz) = —11.420796 deg g2y(qzxz) = 18.930368 deg g2y (gqzxz) = 142.910205 deg
A2¢(Azxz) = —11.420796 deg A2y(Azxz) = 18.930368 deg A2y (Azxz) = 142.910205 deg
AcCzXz = eaA(d)zxz:szz’szz) gczxz = eUZq(d)zxz’VZXZstxz)
0.327674
—0.754547 -0.570448 0.324419 -1.000576
0.123921
gczxz = 0.145002 Aczxz =| 0.642368 —0.743156 0.187303 Aczxz - v =| 0.086515
' 0.134247 0.349725 0.927184 1.411156
0.925323

2.0 Dynamics of Rotating Bodies

2.1 Elementary Dynamics

2.1.1 Rotation of Vectors with the Quaternion

The rotation of a vector rb given in a rotated frame to a vector in the reference frame is
rr = g*rb*conj(q)

where q is a quaternion of norm 1. The time derivative of both sides is

rr_dot = qdot*rb*conj(q) + g*rb*conj(qdot)

where rb_dot is zero because the body is rigid and rr_dot is the relative velocity vr in the reference
frame. We now rotate vr to the body frame with

vb = conj(q)*vr*q

This gives us

vb = conj(g)*qdot*rb + rb*conj(qdot)*q
We know from the time derivative of

conj(@*q=1
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conj(gdot)*q + conj(q)*qdot =0
that
conj(qdot)*g = -conj(q)*qdot

We also see that the two terms in the time derivative are the quaternion conjugate of each other.
This means that the quantity conj(q)*qdot is a pure vector. So, we have

vb = conj(q)*qdot*rb - rb*conj(q)*qdot

We know from the fundamental definition of the cross product (EAOQ Eq. 23)
(1/2)*(v1*v2 - v2*vl1) = v1 X v2

so that

vb = 2*[conj(q)*qdot] X rb

This means that the relative velocity between two points in a rotating coordinate system is given by
a cross product between the vector 2*[conj(q)*qdot] and the vector between the two points.

2.1.2 Rotation of Vectors with the Direction Cosine Matrix
The rotation of a vector rb from the rotating frame to the reference frame is
rr = A*rb

The time derivative, which gives us the relative velocity of the two points on the rigid body where
the vector rb is the vector from one to the other in the body frame, is

rr_dot = Adot*rb

where rb_dot is zero because the body is rigid and rr_dot is the relative velocity vr in the reference
frame. We now rotate vr to the body frame with

vb = ANT*vr

This gives us

vb = AAT*Adot*rb

We can show that AAT*Adot is a skew symmetric matrix from the time derivative of

ANT*A = |

Adot"T*A + AAT*Adot = 0

Since these terms are the negative of each other and the transpose of each other, each term
must be skew symmetric. Also, we know from classical dynamics that the relative velocity
between the two points due to rotational motion is

vb = wb Xrb

This means that the skew-symmetric form for wb and the time derivative of the direction cosine matrix
are related by
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S_wb = AAT*Adot = -Adot"T*A

2.1.3 Differential Equation for the Quaternion

Setting the two equations for vb from equal to each other gives us
gdot = (1/2)*q*wb

or, taking the quaternion conjugate of both sides,

conj(qdot) = -(1/2)*wb*conj(q)

2.2 Euler's Equations for Rotating Rigid Bodies

Euler's equations are the differential equations of motion of rotating rigid bodies. They are derived from

the principles of elementary rotational dynamics -- angular momentum is constant unless torque is

applied to the body. The angular momentum vector h is the product of the moment of inertia matrix M
and the rotational rate vector ». The time derivative of the angular momentum vector h is the applied

torque.

We dervie Euler's equations twice. The first time is the conventional method using the direction
cosine matrix. The second time we use quaternions.

2.2.1 Euler's Equations from Direction Cosines

Angular momentum is constant. In the reference coordinate system,

hr = Mr*er

The moment of inertia matrix Mr of a rotating body is not constant in an inertial frame. In body
coordinates, the moment of inertia matrix Mb is constant. If we freeze (arrest the rotation) of
body coordinates so that we can simply view vectors of motion in that coordinate frame, we can
see that the rotated angular momentum vector hb is, in terms of the rotated or vector wb,

hb = Mb*wb

The angular momentum vector in the body frame, rotated back to the inertial frame, is

hr = A*T*hb = AAT*Mb*wb

Here we have an equation in which both the angular momentum vector and the moment of inertia
matrix are constant. Taking the time derivative of both sides gives us

tr = 0 = (Adot)"T*Mb*wb + A*T*Mb*wb_dot

where we have used dh/dt = torque, which we have stated as zero. This gives us
Mb*wb_dot = tb - A* (Adot)*"T*Mb*wb

From classical dynamics as expressed above, we have

Mb*epb_dot = th - S_wb*Mb*eb

This is Euler's equation for motion of a rotating rigid body. The equation for integration is

3/31/2006
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ob_dot = MbA(-1)*(tb - S_wb*Mb*®b)

2.2.2 Euler's Equations from Quaternions

Angular momentum is constant. In the reference coordinate system,

hr = Mr*r

The moment of inertia matrix Mr of a rotating body is not constant in an inertial frame. In body
coordinates, the moment of inertia matrix Mb is constant. If we freeze (arrest the rotation) of
body coordinates so that we can simply view vectors of motion in that coordinate frame, we can
see that the rotated angular momentum vector hb is, in terms of the rotated or vector wb,

hb = Mb*wb

The angular momentum vector in the body frame, rotated back to the inertial frame, is

hr = g*hb*gconj = g*[Mb*wb]*qcon;j

Here we have an equation in which both the angular momentum vector and the moment of inertia
matrix are constant. Taking the time derivative of both sides gives us

tr = 0 = gdot*[Mb*wb]*qconj + g*[Mb*wb]*qconj_dot + g*[Mb*wb_dot]*qconj

where we have used dh/dt = torque, which we have stated as zero. This gives us
Mb*wb_dot = tb - gdot*gconj*[Mb*wb] - [Mb*wb]*qconj_dot*q

From classical dynamics as expressed above, we have

Mb*epb_dot = th - S_wb*Mb*nb

This is Euler's equation for motion of a rotating rigid body. The equation for integration is

®b_dot = MbA(-1)*(tb - S_eb*Mb*wb)

2.3 Euler Angle Rates, the Rotation Rate Vector, and Quaternion Time Derivatives
2.3.1 Aerospace Sequence

Derivatives of components of the rotation quaternion with respect to the Euler angles

(3 (3 ()

cos(gj qdpitch(y) = qdyaw(\y) = 0
0
0

qdroll(¢) =

N |-
N |-
N |-

0

0
cos(%j
cos| —

Quaternion derivative with respect to time from Euler angles & their derivatives with respect to time

eu2qd(¢,y,v,¢d,vd, yd) == gprod(qdroll(¢), qprod(gpitch(y), ayaw(y )); od .
+qpr0d§qrol|§>¢; prodqupltch() yaw( )) vd ..
+ qprod ) qpltch( g,qdyaw( ))) yd

groli{¢), gprod
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Two ways to get the angular rate vector o from the quaternion

B 2 - gprod(qconj(q), qd) Angular rate vector o from quaternion
qd20(q.,qd) := qZV( an(a) and its time derivative (Kuipers Eq. 11.9
p. 263)

cos(y) . cos(\y) sin(\y)

0
ed20(9,v,y) = | —sin(y) - cos(y) cos(y) 0 Convert from Euler angle rates vector
. ( ) 0 1 to angular rate vector o (a closed form)
Sty Determinant is cos(y); singularity at y=n/2

cos(\y) —sin(\p) 0 | I . .
1 . Euler angle rates from the
m2ed(¢,v,\l/) = cos(y) cos(y) . sm(\y) cos(y) . cos(\y) 0 rotation rate vector
—sin(y) - cos(\y) sin(y) : sin(\p) cos(y) Determinant is 1/cos(y)

2.3.2 Orbital Sequence zxz

Derivatives of components of the rotation quaternion with respect to the Euler angles

) [

0 qdincl(i) = = cos(lj qdlan(Q) = 0
0 2 2

0

0

) ¥

Quaternion derivative with respect to time from Euler angles & their derivatives with respect to time

than(v) =

N |-
N |-

euzszqd(v,i,Q,vd,id,Qd) = qprod(than(v ,qprod(q incl(i),q_lan(Q)) -vd ..

+ gprod{qg_tan v;,qprodquincl(i),q_IanEQ ;; -id ...
+ gprod{q_tanlv),qgprod\g_incl(i),qdlan\2))) - Qd

Two ways to get the angular rate vector o from the quaternion

_ 2 - gprod(gconj(q),qd) Angular rate vector » from quaternion
9992¢(a, qd) = qZV( an(a) and its time derivative (Kuipers Eq. 11.9
p. 263)

sin(i) - sin(Q) cos(Q) 0
ezxz20(v,i,Q) = | sin(i) - cos(Q) —sin(Q) 0
cos(i) 0 1

Convert from Euler angle rates vector
to angular rate vector o (a closed form)
Determinant is -sin(i); singularity at i=0

sin(Q) cos(Q) 0

m2ezxz(v,i,Q) = L -1 sin(i) - cos(Q) =sin(i) - sin(Q) 0
sin(i)

Euler angle rates from the
rotation rate vector
sin(Q) - cos(i) —cos(Q2) - cos(i) sin(i) Determinant is -1/sin(i)
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2.4 Numerical Examples of Rotation Rate Conversions

phi = 33deg gam=-10deg  psi = 42deg
phid .= -7 - ﬂ gamd := 4 - ﬂ psid := 3 - ﬂ
sec sec sec
Qjgn = 21deg fincl = 22deg Vtanom = —240 deg
deg . deg deg
lean =4.— 'dincl =7.— thanom = -3.—=
sec sec sec
phid
eurv := | gamd
psid

wbv := ed2w(phi,gam, psi) - eurv
—2.446461

7.585334
4.215537

deg

wbv = w2ed(phi,gam, psi) - wbv =

gdex := eu2qd(phi,gam, psi, phid, gamd, psid)

gex := eu2qgn(phi,gam, psi)

0.790334
-0.086887
gex = _3
6.838161 x 10
0.606445
0.294134
—2.690392
qdex = deg
2.531601 | sec
2.567018
-1.16606
deg
ggqd2m(gex,qdex) = | 6.814668 | —
4.103984
—-5.510166
. . d
®2ed(phi,gam, psi) - qgd2m(gex,qdex) = | 4.284039 g9
sec
3.147154

qdzxz := eUZXZqu(Vtanoma fincl> Q1an> VAtanom 1dinct» lean)

Copyright 1986-2001 by James K Beard
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Angles (from previous examples)

Angle rates

From previous examples

Angle rates

Euler angle rate vector

Matrix mapping Euler angle rates to wb

-7
s | oo

sec
3

Quaternion equation for wb in terms of
the quaternion and its time derivative

Numerical check with brute force numerical
computations

—-0.327674

—-0.123921
qzXz =

—0.145092

—0.925323
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®zxz := qqd2w(gzxz, qdzxz)

6.132322
ozxz = | 3557752 | 369
SecC

1.218448

m2ezxz(vtanom, iinc|,Q|an) -ozxz=| 7

Opxz = —11.420796 deg

Edzm(q)ZXZ’YZXZ’WZXZ) : Jaceo(vtanomaiincl) )

Jaceo(vtanom,iind)~Jacoe(¢zxz,szz): 010

Yoxz = 18.930368 deg

Rotational Dynamics of Rigid Bodies 3/31/2006
Vanom
0lzxz = ezszco(vtanom, iind,Q,an) | idipg
lean
6.132322
de
olzxz = | 3557752 | &2
1.218448
-3
deg
sec

4

Wy, = 142.910205 deg From previous example

V0tanom 6.132322

idineg | =| -3.557752 deg Chain rule o vector
Qd 1.218448

100

Jacobians are inverse of each other
001

3.0 A Numerical Example of a Rotating Body Model

3.1 Specific parameters that model the body and the points on it

We will model a spinning hollow cone. The vertex is along the body X axis at distance .5*height from the orign.

height:=1-m diam:=.3-m

thick := 0.05- m

Model Inputs

Height and diameter of cone

Half-thickness of cone

Euler angles used here are aerospace sequence (zyx). See below for orbital element sequence (zxz) method.

¢o:= 0.0 Yo := 0.05
Vo = 0.0 io = 0.05
¢dg := 1.0 ydg == -0.0
vdg:= 1.0 idg := 0.05
ki
pcone0 := 2500 - ~
m3

pconea := pcone0 - thick - 2

diam

tanh¢c .= ———
2 - height

Copyright 1986-2001 by James K Beard

yo = —-0.05 Initial Euler angles
Alternative -- orbital element sequence
Qq:=-0.05
ydy:= 0.0 Initial Euler angle rates
Qdg:= -.05 Alternative -- orbital element rates

Density of material of cone

Mass per unit area

Tangent of the half-cone angle
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npm:= 2

npm,:= 2

sechalfcone := \’ 1+ tanhc2

sinhalfcone :=

tanhc
sechalfcone

mpm, := —pconea- (.01- m)2

mpm, = 50 - kg

ppm, =

ppm,, :=

height

height
6

- tanhc

0-m

height2 := .5 - height

height r=n
MasScone := pCONea - tanhc - sechalfcone - J J
Om -7

Xeg:

Yeg =

Copyright 1986-2001 by James K Beard

MasS¢one

MasS¢one

MasScone

npm

k=1

npm

k=1

npm

k=1

Rotational Dynamics of Rigid Bodies

3/31/2006

Number of point masses

Subtract 10 cm square fuze window

Add 50 kg warhead

Fuze window is 1/3 the height away from nose

Warhead is 2/3 the height away from nose

x d¢ dx + if| npm >0, Z mpm

+if| npm > 0, z [mpmk_l : (ppmk)o},o -kg-m

-7

+if| npm > 0, z [mpmk_l : (ppmk)l},o -kg-m

-7

+if/ npm > 0, z [mpmk_1 : (ppmk)z}o -kg-m

Page 17 of 34

npm

k=1

height rn
- | pconea - tanhc - sechalfcone - J J X - (height2 — x) dp dx ...
Oom -T

height rn
- | pconea - tanhc - sechalfcone - J J X (x . cos(d))) do dx ...

height ,n
- | pconea - tanhc - sechalfcone - J J X - (x : sin(¢)) do dx ...

k—1’0 - kg Mass

Center of gravity
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MasScone := T - pconea - tanhc - sechalfcone - height2

Rotational Dynamics of Rigid Bodies

3/31/2006

1
Mass of the cone without point masses

The equations here assume thin skin hollow cone with no base. Add other masses or subtract missing
mass to model irregularities such as fuze windows, mechanisms, warheads, etc. The moment of inertia

matrix is given by (EAOQ Eq. 124)

(v- ycg)2 +(z- ch)2 X = Xeg) (Y = Yoo) X~ Xeg) - (2~ 2cq)

— 2 2
M= PCONE(X,Y,2) | (X = Xeg) - (¥ = Yog) (X = Xeg)” + (2= 2g)” (Y = Veg) - (2 — 2eg) | B2y O
2 2
A% = xeg) (2= 2eg) Y~ Yeg) (2 2eg) (X = Xog)" + (¥ ~ Vo)
J J J
where .
o) [ .
MasScone :‘[ J J pcone(x,y,z) dz dy dx Yeg | = W . pcone(x,y,z) - |y |dzdydz
ch cone J J J 7
“height"
cg =
6 Center of gravity is 2/3 of height toward base

]
Yeg = 0
Zeg:= o"

Moment of inertia matrix and its inverse
height? 2 T
AL tanhc 0 0
MO ‘= Mass..... - height2 1 tanhc? No point
- cone 0 —_— =+ O masses
2 9 2
.2 2
heigh 1 h
0 0 eight” | 1 N tanhc
L 2 9 2 )|

MasScone = 169.102711 kg

height rn
IX2 := pconea - tanhc - sechalfcone - J J' X

Om -7
npm

+if npm>0,z

k=1

Copyright 1986-2001 by James K Beard

Xeg = —0.166716 m

Yog = ~7.391957 x 10 °m

Zgg=0m

- (height2 - X - xcg)2 do dx ...

2 2
[mpmk_l - [(ppmk)o - xcgﬂ }O -kg-m
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height r=n
2
ly2 := pconea - tanhc - sechalfcone - J J' X - (x - tanhc cos(¢) - ycg) do dx ...

Om -
npm ; )
+if| npm > 0, Z [mpmk_1 : [(ppmk)1 - ycgJ },O -kg-m
k=1
height r=n
2
122 := pconea - tanhc - sechalfcone - J J' X - (x . tanhcsin(q)) - zcg) do dx ...
Om -
npm ; )
+if| npm > 0, Z [mpmk_1 : [(ppmk)2 - ngJ },O -kg-m
k=1

height rn
Iy := pconea - tanhc - sechalfcone - J x - (height2 — x — Xgq) - (x - tanhc - cos(¢) — Yeg) 4 dX ..

Om -
npm
+if| npm > 0, Z [mpmk_1 : [(ppmk)o - xcgJ : [(ppmk)1 = Yeg|].0- kg - m?
k=1

height rn
Ixz := pconea - tanhc - sechalfcone - J J x - (height2 — x — xcg) - (x - tanhc - sin(¢) — zeg) d dx ...

Om -
npm
+if| npm > 0, Z [mpmk_1 : [(ppmk)o - xcgJ : [(ppmk)2 ~ 2g[].0 - kg - m?
k=1

height rn
lyz := pconea - tanhc - sechalfcone - J J X - (x - tanhc - cos(¢) - ycg) . (x - tanhc - sin(¢) - zcg) do dx ...

Om -
npm )
+if| npm > 0, Z [mpmk_1 : [(ppmk)1 - ycgJ : [(ppmk)2 ~ Zgy[],0 - kg - m
k=1
ly2 + 122  —Ixy —Ixz
M = -Ixy Ix2+1z22 -lyz
—Ixz —lyz IX2 + 1y2

-1
Mipy := M

3.2 Numerical Evaluation of Moment of Inertia Matrix from Density Versus Position

The following treatment is a valid method, but is very slow, particularly in Mathcad or other interpretive
general purpose languages because the method involves a lot of multiple nested numerical integrals of
discontinuous functions. When possible, use closed forms determined by analysis as above. The
equations below are disabled for computation because they would otherwise slow down the evaluation
of the Mathcad spreadsheet.

Rationale for Distance from a Point to a Cone:
The equation for the surface of a cone can be written as

3/31/2006
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|(p - PO)Xu| = [p - pO|*sin(V)
or
((p - pO),u) = |p - pO|*cos(6)

where p0 is the vertex, 0 is the half-cone angle, and u is a unit vector along the axis, postive from the vertex
toward the base. The additional conditions

0 < ((p - p0),u) < height

apply to define the height of the cone. For an arbitrary point x, the geometry can be projected to two
dimensions by noting that the point X is related to a ray of the cone by the X and Y coordinates defined by

X =[(x = po),u] = |x = py| - cos(6x)"

Y = |(x - po) x u| = |x - py| - sin(0x)"

where 0x is the angle between the axis of the cone and the line from the vertex to the point x. We now have
reduced the three dimensional distance problem to the two dimensional problem of finding the distance from

a point to a line, the line being defined by the two points (0,0), the vertex, and (height, diam/2). That distance

is given by the absolute value of the cross product of the vectors from the vertex to the point and the normalized
vector between the two points on the line.

2 21yl | 21

Ixyz(x,y,z) == Near the cone?
ya(x.y.2) height diam diam
Xdist(x,y,z) =x—-.5- heightI X coordinate in 2D projection
]
Ydist(x,y,z) := \/ y2 + 22 Y coordinate in 2D projection
TwoDcp(X,Y,z) := .5- (X — .5 - height) - diam + height - \/ y2 72 Two dimensional cross product
L2 .2 ;
constl := \/helght + .25 - diam height of ray of cone

| TwoDep(x,y,z)| o)l

dist(x,y,z) := if| Ixyz(x,y,z) <1,
constl

|.5. (X — .5 - height) - diam + height - \/y> + 22| 100}

dist(x,y,z) = if| Ixyz(x,y,z) <3,
constl

pcone(X,y,z) = if(dist(x,y,z) < thick,pconeo,o) Density function for integrals
xlim := .5 - height Limit to parallepiped containing cone

yzlim:= .5 - diam

xlim  eyzlim  ryzlim Mass of cone
MasScone = pcone(x,y,z) dz dy dx

—xlim “—yzlim ¥ - yzlim

MasScone = 169.102711 kg
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1 ~xlim o eyzlim o eyzlim
og = X - pcone(x, y,z) dz dy dx
MaSScone |\ Y _ xlim J—yzlim “ - yzlim
~xlim  eyzlim o eyzlim '
1
og = y - pcone(x, Y, z) dz dy dx
MaSScone |\ ¥ _ xlim “— yzlim “ - yzlim
. xlim  cyzlim  ryzlim :
2oy = J J J z - pcone(x,y,z) dz dy dx
MaSScone | Y _ xjim ¥ — yzlim ¥ - yzlim
Xoq = —0.166716 m
-6
Yeg = —7.391957 x 10 " m
Zgg= Om
NV 0 0
magl(x,y,z) := 0 x2+y2+ 2 0
0 0 X2 + y2 + 22

XX Xy X-2
X-yyyy-z
X-Z Y-z 22

outer(x,y,z) :

moifun(x,y,z) := magl(x = XegsY — YegrZ — zcg) - outer(x = XegY — Yeg 2 — zcg)

ii:=0..2 ij:=0..2
xlim  ecyzlim  r~yzlim
beii i = J pcone(x,y,z) - moifun(x,y,z)ii i dz dy dx
—xlim “—yzlim ¥ - yzlim
-3 -6
7.924913 x 10 2.46435 x 10 0
M 2
MasSgone T | 246435 x 10 6 0.043083 0 m
0 0 0.043083

3.3 Computed Model Parameters

Model Inputs -- Comment out unused option
Default option: Aerospace sequence Euler angles

Copyright 1986-2001 by James K Beard Page 21 of 34
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Center of gravity

Magnitude squared times |

Outer product of vector

Kernel of moment of inertia
integral
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¢do
0 = ed20(g, 70, wo) - | 1do Initial rotation rate vector
vdo
do := eu2q(do. Y0, Vo) Initial rotation quaternion
qdo = eu2qd(¢0,y0,w0,¢d0,yd0,\yd0) Quaternion time derivative

Second option: Orbital element Euler angles

Vdo
®g = ezszm(vo, iO,QO) -] idg Initial rotation rate vector
Qdg
do = euzszqpc(vo,io,Qo)' Initial rotation quaternion
qdp := euzszqd(vo, ig, g, vdg, ido,Qdo)I Quaternion time derivative
0.997502 0.997502
qqd2e(qp, qdg) = | 0.049917 wo = | 0.049917 Numerical checks
0.049979 0.049979
yinit := stack(qo,mo) Initial state vector

3.4 Set up equations of motion

The differential equation must be stated in the form dy/dt = f(t,y) where y is a state vector.

The state vector is the quaternion for the first four states and the rotation rate vector for the last three states.
We state these differential equations separately and augment them for the Mathcad numerical differential
equation software.

qdot(q,m) = 5. qvprod(q,co)I Base quaternion differential equation (not used)
0
torque:=| 0 Homogeneous form -- no torque applied
0
wdot(torque,m) = Mipy - (torque - Skewsy((o) -M- w) Euler's equations
gstab(q) := —2qgstabconstant - (|q| — 1) Stabilization of quaternion amplitude
to unit length
qstab(q) Constant gstabconstant set below
®o
oaaug(q,m) = Augment real part of rotation quaternion
o1 to stabilize quaternion magnitude
®2
qdot(q,w) =.5. qprod(q,waug(q,w)) Quaternion differential equation
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3.124349 x 10
qdot(qo,wo) = 0.499688 Initial quaternion time derivative
0.012495
0.012495

3.5 Functions to Extract the Quaternion and the Rotation Rate Vector from the State Vector

3/31/2006

Yo y
4
Y1
ya(y) = yo(y) =| Yg First 4 states are the quaternion,
Y, next 3 states are the rotation rate vector.
y
6
Y3

3.6 Differential equation as stated for numerical integration

dot , I
a (yq(y) yco(y)) Derivative of state vector f(t,y)

Derivx(t,y) = (

qdotlya(y).yo(y))o
qdot(ya(y), ye(y))1
qdot(ya(y). ye(y))2
Deriv(t,y) := qdot(yq(y) ,ym(y))3 Derivative of state vector f(t,y)
wdot(torque, yo(y) 0
(
(

odot torque,y(»(y))l
wdot torque,yo)()/))z

3.7 Jacobians

Mathcad numerical integration routines require the Jacobian matrix. This is a matrix
whose first column is the partial derivative of the f(t,y) vector with respect to time, and
whose next 7 columns are partial derivatives of f(t,y) with respect to the 7 elements of y.
We give equations for the gradients separately, then build the Jacobian through
augmentation using the gradient matrices as submatrices.

gs —0p —®1 —®2

0 0s o2 -0
qoaqgradq(m,qs) = Gradient of g*w with respect to q as a vector
w1 —®2 05 ©g Note that this is NOT the matrix isomorphism

0y ©] —0p O for w as a quaternion. "gs" is gstab(q).

gosgradq(q) := —2gstabconstant - q - qT Second term is gradient of gstab term with
respect to g as a vector

qwgradq(q,w,qs) = qwqgradq(co,qs) + qwsgradg(q) Total is sum (chain rule for differentiation)

(»dot(torque,ym(y)) Format incompatible with Mathcad

Format compatible with Mathcad
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~9p 79 9
qogradm(q) = Gradient of g*o with respect to o as a vector
z dp 9 Note that this IS the last 3 columns of the matrix
isomorphism for q
92 9 Y9
0
0
Jacobq(q,m) := .5 augment 0 ,qcogradq(q,m,qstab(q)),qmgradm(q) 4X8
0
000O00O
3X8
Jacobm(m) :=augment{{0 0 0 0 O |[,—Mjy - (Skewsy(m) -M - Skewsy(M . m))
000O0O
Jacoby(t.y) := stack(Jacobq(yq(y) . ye(y)) . Jacobelya(y))) %8

3.8 Numerical Solution of Nonlinear Ordinary Differential Equation
Now we are ready to solve the differential equation using the Rosenbrock method for stiff differential equations. A
differential equation is stiff if the Jacobian is nearly singular. Most methods of humerical integration are unstable
for stiff equations.

Numerical simulation inputs

tp:=0 tmax := 100 Time of solution

npoints := 250 Number of data points
SOLN := Stiffr(yinit,to,tmax,npoints,Deriv,Jacoby) Solution of differential equation

3.9 Extract Quaternion and Rotation Rate Vector from Output

n := 0..npoints Range variable for data output

gout(n) := submatrix(SOLN,n,n,1,4)T Extract the quaternion from the output

oout(n) := submatrix(SOLN,n,n,5,7)T Extract the angular rate vector from the output

tout(n) := submatrix(SOLN,n,n,0,0) Extract the effective time (epoch) of each output point

3.10 Monitor The Quaternion Damping for Keeping It to Unit Length
Set gstabconstant so that maximum peak quaternion error is minimized (try to keep below 107(-6)).

The plot of the quaternion amplitude error is helpful but use the maximum peak error. Start with a value of about
0.5 (the stability limits are zero and two). Increase npoints if necessary.

Numerical simulation input

gstabconstant = .5 Set quaternion damping constant
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Quaternion amplitude damping coefficient

- 8 ]
|gout(n)| -1-2-10 Monitor the maximum peak error

Vg, = |gout(n)| — 1

-4.10°8 | |
0 100 200 300 max(vqg) = 0
n . -8
min(vqg) = —3.310043 x 10
max(vq,—vg) = 3.310043 x 10~ °
1.43254
Angular momentum (should be nearly
|M-wout(n)| 1.43252[~ - constant)
| | 1.336798
1.4325 2
0 100 200 300 M- o =| 0.364085 | m™-kg
A 0.364121

4.0 Watch a Point on the Rotating Body

4.1 Draw the cone

Assume the body is a cone with its axis in the X direction. We want to draw a line from the vertex to the base,
then a circle around the base.

Nbase := 6 Nheight := 4 Number of points to plot the base and height
ibs := 0.. Nbase iln := 0.. Nheight Range variables for drawing
< _ height B height - iln

ISR ~ Xcg Coordinates of points on the cone
ibs, iln 2 Nheight

iln - diam 2-m-ibs
Y. . o= — - COS — Yeg
ibs,iln " 2. Nheight Nbase

iln-diam _ (2-m-ibs
Z. o= - - sin — Zeg
ibs,iln " 2. Nheight Nbase

View of cone from the vertex
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View of cone from the vertex

(X,Y,2)

4.2 Animate the rotation

Xibs, iln

pvect. Store points in vectors for rotation

ibs, iln = Yibs, iln
Zibs, iln

Rotate according to solution of differential

PVEC e i = qprot(qout(FRAM E).pvecto ”n) equation

Xribs, in = (rpVECtibs, "n>0 Store rotated points back in array for plotting
Yins,iln = (rpVECtibs,iln>1
Zlips, iln = (rpveaibs,iln)z

Plot for animation below
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Y]

F/

Double-click the icons
to view animation
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Note
Click on the bordered pictures to run the simulations.  The first one, on the upper left, is a hollow cone.  The second one, on the upper right, has a 10 cm fuse window.  The lower one, to left, has a 50 kg warhead in addition to a fuze window.

Simulations are 100 seconds, played 4X fast time.
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4.3 Show Plots of Rotated Positions

1 0 0
rpl:=|0 mp2:=|1 mp3:=|0 Positions of points on the rotating body
0 0 1

routn := gprot(qout(n), rpl)

time := SOLN
AW n,0

Three components of position

0.8~ —
0.6~ —
(routn 0 N N o~
- II \\ 'II \‘ II ‘\
routn) L o4l ’I “ ” x\\ ’: h B
_____ . ! \ ; \ ) \
) \ ' \ l !
e S A IR A
| / \ ,', l“ / \ , _
0.2 " \| f \ ’l \I h
/ \ ,', \ 1 \ /
|’ “ ! ‘| ,’ “ I’
,' \‘ ,' “ ’l \‘ "
O 7_ “ " \‘ ’, \‘ ’I —
\ 1 \ / \ /
\ / \ / \ /
N N\ N
02 | | | | |
"0 20 40 60 80 100 120
time,
0.997502 0.997177
routo =| —0.049979 routl =| —0.029286 Examples to identify starting points of plots
-0.049917 —0.069139
X = (routn) ry, = (routn) rz, = (routn) Vector components of output points
0 1 2
sout_ := gprot(qout(n), rp2) tout := gprot(qout(n), rp3) Other points for plotting
sX = (soutn) sy, = (soutn) sz, = (soutn) Vector components
0 1 2
X = (toutn> ty, = (toutn> tz, = (toutn>
0 1 2
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Point (1,0,0) versus time

(rx,ry,rz)
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Point (0,1,0) versus time

(sx,sy,sz)
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Point (0,0,1) versus time
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(tx,ty,tz)
4.4 Watch Precession Through Rotation of the ® Vector

®Xp = oout(n)g

®Yp = oout(n)q Components of rotation rate vector
®Zp = oout(n)s
0.997502 0.997503
oout(0) = | 0.049917 oout(1) = | 0.063278 Initial points to identify starting point
0.049979 0.031363

7 \
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(ox, 0y, »z)

Components of the Rotation Rate Vector

0.8

0.6

oout(n)q

oout(n),

0.2

- - ~ N ~ N 2 Y \ /\’\\ N\ ’\\ “\ N

. \\\“ I/II\,’\ \ //”\,(‘ \\‘ /;’X \\\ "\\ \“ //'IY\ \\\ | ,",\ v ‘,\ ‘\‘ ':\\ | / ! \ /II, \ /”1\ \ /II\I’\\ \\‘ / ;

\ ] 1 Vi \ ] (WAl v/ \ \ 1

\;\(,ll \-‘),\III \y II \‘/\/I \/\‘{_1/ \){\_I’ \ /v,l \‘/‘" \/‘\J,I \ \\ J/I \%J/ \\ II \)\/I’
—0.2

10 20 30 40 50 60 70 80 90 100 110
time,
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