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THE @ — 3 -1n-0 TRACKER
WITH A RANDOM ACCELERATION PROCESS NOISE

John J. Sudano
Lockheed Martin Naval Electronics & Surveillance Systems-Surface Systems
Moorestown, NJ 08057

ABSTRACT: Time has proven that o — f filters

provide a good and useful tracking methodology
when used with sensors that measure position only.
As new sensors are being integrated into platforms
that measure position and Doppler velocity, a new
tracker is required to properly process both position
and velocity sensor measurements. This article
addresses this need.

This article introduces an g-g-pn-g filter, which

processes both position and velocity sensor
measurements. This new filter optimally tracks
objects having a random acceleration maneuver (g , )

model while being updated from a sensor having
position (g ) Yand velocity(av )measurement errors

and T as the time between measurements. The key
variables of this tracker, the gain and the covariance,
are computed analytically. The filter gain is found to
be a function of only the unitless position and
velocity tracking indices A, and A, defined as:

A, = oI’
O-P
o, T

A, =2
O-V

Note that all the physics of the optimal gain is a
function of only two ratios containing the only

physical variables (0, , G, Oy, T) in the system,

i.e., the tracking indices. Hence, two diverse systems
with different measurements errors and different
update times but with the same tracking indices will
have the exact same optimal gains. The analytical
form of the covariance is also computed. The
covariance is shown to be equal to the gain matrix
times the measurement error matrix.
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The a— f—n—0 filter computes the same results
as the o — B filter [1] in the limit of position only

updates or the velocity measurement error going to
infinity.

Examples are computed that demonstrate that
tracking errors are reduced if both position and
velocity measurements are used inan ¢ — 8 -1 —6
filter, rather ‘than position only estimates in an
o — B filter. This impacts the physical processes
that use track kinematics.

GLOSSARY OF SYMBOLS
T = The time between measurements
(o} i = The random acceleration maneuver
variance

o ﬁ =  The position measurement error variance
0'3 =  The velocity measurement error variance
A, = The unitless position tracking index
A= The unitless velocity tracking index
K = The gain of the tracking filter

o, 3,n,0 = The unitless variables in the gain matrix
Q = The model process noise

P(+)= The covariance after an update

a,b,c = The components of the covariance after an

update

P (=)= The extrapolated covariance
F = The transition matrix
H= The measurement matrix
R = The covariance of the measurement

errors
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The @ — B trackers have been used successfully for
the past forty years [2] for tracking objects. The
o — B tracker is obtained from the analytical
solution of steady state Kalman tracker. The gains
and covariance terms need not be computed

recursively since they are a function of only the
tracking index. This reduces the computation of the

implementation. Normally, optimal tracking using an .

o — B filter or Kalman filter maintains a balance

between the maneuver model error and the
measurement error. Kalman filters in steady state
have been used since 1976 [1] to design & — f3
trackers. The Kalman filter structure in steady state is
the method used here to solve thect — 8 ~1—0

filter. The notation and the Kalman equations used in
this analysis are taken from [3].

MATHEMATICAL MODEL

The gain of the & — B —1 —0 filter will have the
following form, hence the name of the filter.

. (%) (Tn) .
2] o
T

T T
Q = O': 74"3 2 ( 2)
T
2
The covariance after an update has the following
form:
a b
P(+)= (3)
b ¢ .

The transition matrix is:

F—IT 4
lo 1 (4)

The measurement matrix is:

H—10 5
“lo 1 (5)

The variance of the measurements assumes that no
correlation exists between position and velocity
measurements.

c 0 ‘
R = Op . . (6)

The extrapolated covariance is:
P, (-)=FPR(+)F" +Q, (7
The result of substituting equations (2), (3), and (4)

into (7) is:

P.()= (@a+2bT+cT* +02T*14) (b+cT+0.T°/2)) (8)
“ (b+cT+02T*12) (c+0°T?)

The gain is computed as:
Ki = BuOHLHP ()H" + R, T (9)

The covariance after an update is:
E+l(+) = [1 - Ki+lH]P;+1(_) (10)

Substituting equations (5) and (9) into (10) gives a
new form for the covariance:

Pu(#)=P,() =By (P )+ R, TP, (1D
Substituting equations (6) and (8) into (11) and

simplifying leads to the following unique covariance
terms:

0l(-4b +4co T +co [T +0l0 T +4a(c+0l +0 T?)+4b(26 [T+ 2T?)) 12)

Piy(Hay =

20l07(2b+ 2T +0.T?)

Po(H)us =Pa(Hay = D
P

(13)
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o2(-4b* +4c0o’ +40 0T +4bo T’ + coT* + 4a(c+ 0 T?)) (14)

Po(+) s =
xl( )(2.2) Dp

with

D, =—4b* +4c0> +40707 +4020°T" + cT* (40 +0.T%) +0.0.T* +4a(c+ 0. +0.T*) +4b(20.T + 0.T")

2
into the

Substituting O
P v

above equations and setting P.(+) = P, (+)

leads to the solutions of the three steady state
covariance components a, b, and ¢ of equation 3,:

a=P+)gy = SAL@AL+A,

[-A’,(16+2A’,+A, AL+ )+A @m ,IA‘NHA’ +4(AL+A A2 +4)

(15)

42N +A,,/A2, +4)

b=P(¥)qq = P(+)ayy =[

(16)

JR AN +aA2 + A, N +4) _l]ggrz
N +A A +4 J 2
an

The steady state extrapolated covariance can be
computed using equation 7.

c= P(+)(z,z) =

P(-)=FP(H+)FT +Q (18)

Simplifying the results, the covariance components
are:

A-(16+2A’+A /\2
Py = BAL(2AL +A,

19

8+2A1+A ,[A’ 4+,fA’ 4\’/\‘ +4(A1+A A‘+4 J"

Py =Py = { 42N+ A A +
VEALNA,

(20)

VR v ay A+ 4R +A N +4) 1]0312
22+ A, A +4 J 2
(21)
Rewriting the variance of the measurements of
equation (6) as:

P(=)an =

8+2A% +A,,/At +4- A +4 AL +4(A] +A,,/A{ +4) }”T’

+A (8+A \/A‘ AMAZ +4(AL+A, Az ]ﬂ

air!
el o (22)
- o Gl
A2
v

and substituting to compute the gain as:

K = P(-)H[HP(-)H +RT" (23)

The components of the gain after simplification are:

ek = —A‘,@6+2A’,+A, A‘,+4)+A,(8+A,,/A{+4 A2+ 4(A2 + A A2 +3)
Cen 82N + A, N +4)
(24)

42N + A, AL +4)

8+2A2 4+ A, AL +4 - JA 44N +4(A2 +A AL +4)
NT =Ky = T

(25)

Bx, - 84200 + A, AL +4 — AL+ &AL + 4N +A A +4) |
T 4QA+A A+ )T :

(26)

(VR AN v a1 a, R 14 s
N +A, A +4 2
@7

An interesting relationship between the off diagonal
gain components is:

Koy _ N, _ov (28)
K., NT* o2

Or equivalently between 8 and7):

22 A2
p=| T |22 (29)
o, A

The covariance can be shown to be equal to the gain
times the measurement error matrix:

P(+)q, =K (U)O‘; (30)



P(H)an = (1.2)03 3D

P(+)qy, = Koo (32)
P(+)2 = K207 (33)

or equivalently:
P(+)=K-R (34)

This form can also be used to compute the gain.

2
l/GP 0

K =P(+)-
“® 0 Vo

(35)

This is consistent with the following equation from
31
K,=P(+)-H-R™ (36)

A plot of the gains as a function of the positional and
velocity tracking indices Ap and index AV is shown

in the following plots from figure 1 to figure 4.

Figure 1 is a plot of the gain component & (equation
24) as a function of the positional tracking index A »

from 0 to 10 and of the velocity tracking
index A, from 0 to 15

. Figure 2 is a plot of the gain component?] (equation

25) as a function of the positional tracking index A,

from O to 1 and of the velocity tracking
index A, from O to 1.5

Figure 2a is a plot of the function A28/ Azpas a
function of the positional tracking index A p from 0

to 1 and of the velocity tracking index A, from 0 to
1.5
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Figure 3 is a plot of the gain component [3 (equation
26) as a function of the positional tracking index A »

from 0 to 20 and of the velocity tracking
index A, from O to 5

Figure 4 is a plot of the gain component 8 (equation
27) as a function of the positional tracking index A »

from 0 to 2 and of the velocity tracking
index A, fromOto 1.5

In the Limit of @ —f3—7—0 with Position
Measurements Only

The tracking performance of the@— B -1 -0 in
the limit of the velocity measurement error going to

infinity, is equivalent to an o — f3 tracking filter
with only position measurements. This tracker was
analyzed in 1976 [1] where the @ — 3 filter has a
random acceleration maneuver & , model while being
updated from a sensor having raw positional
measurements estimates with an error of O,.

Therefore, in the limit of the velocity measurement
error going to infinity is equivalent to the velocity
tracking index going to zero.

A, = o, T
o, (37)
A, =0

In the limit of only positional updates, the velocity
tracking index goes to zero and the non zero gains

are:
[-A,B+A,)cla+a, WA,84A,)) (38)

Oy = 8

. 4+Ap—,/Ap(8+A,,)}\p )
4

The above gains solve the [1] constraint equations.

2
b _p 40
-, *

and
BZ-42-ay)B, +402 =0, (41)

or equivalently

Bo =22 -ap)-4T—ay  (42)

Therefore in the limit of only positional
measurements theat — 3 —n—0 tracker gives the

correct & — 3 tracker results.

EXAMPLE

In this section an example will be calculated
comparing a tracking filter that updates using only
position measurements to one that updates using both
position and velocity measurements.  The sensor
position measurement error is the same for both
trackers. The requirement on the track maneuver is
the same as the value for the random acceleration

maneuver (O , ) model.



Case 1. The tracking filter updates with position and
velocity measurements.

T =1sec

o, =10 ft /sec’
o, =500 ft

o, =5 ft/sec

The gain is computed as:

0.578782 sec )

0.828392

_ 0.00992129
~1 0.0000578782  /sec

20.7 ft? /sec?

2480 fi?
P(+) =
) (l4.5ft2/sec

14.5 fr* / sec ]

Using the square root of the covariance as a measure
of the performance for the tracker, the one sigma
position error is 49.8 ft and the velocity error is 4.6
ft/sec.

Case 1A. The tracking filter updates with position
measurements only.

T =1sec
o, =10 ft /sec?
o, =500 fi

The gain is computed as:

X - 0.181201
"1 0.0180975 /sec

4524 fr?/sec
951 ft? /sec?

2
Pt = ( 453002ﬂ
4524 ft° /sec
Using the square root of the covariance as a measure
of the performance for the tracker, the one sigma
position error is 212.8 ft and the velocity error is 30.8
ft/sec.

A comparison of this example shows that using the
velocity measurements reduces the position error
estimates of the tracker by a factor of four and it also
reduces the velocity error estimates of the tracker by
a factor of six.

Case 2. The tracking filter updates with position and
velocity measurements.

T =1sec

o, =10 ft /sec’
6,=50ft
o,=5ft/sec

The gain is computed as:

_( 0.0926147 0.521288 sec
1 0.00521288 /sec  0.825341
231 .5ft2 13.02/
Po=| o) e
13.0ft*/sec  20.6 ft*/sec

Using the square root of the covariance as a measure
of the performance for the tracker, the one sigma
position error is 15.2 ft and the velocity error is 4.5
ft/sec.

Case 2A. The tracking filter updates with position
measurements only.

T =1sec
o, =10 fr /sec?
c,=501

The gain is computed as:

x| 0467328
~10.145969 /sec

1168 ft*
P(+) = 7 R R
270 ft~ /sec

365 ft?/sec
365 ft* /sec
Using the square root of the covariance as a measure
of the performance for the tracker, the one sigma

position error is 34 ft and the velocity error is 16
ft/sec.

A comparison of this example shows that using the
velocity measurements reduces the position error
estimates of the tracker by a factor of two and it also
reduces the velocity error estimates of the tracker by
a factor of three.
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CONCLUSION

This article introduces and solves the o — -1 —6
filter. This filter is used to optimally track objects
having a random acceleration maneuver (O , ) model

while being updated from sensors having position and
velocity measurements estimates with respective

errors of (Op) and (O) .

function of only the unitless position and velocity
tracking indices

The filter gains are a

A, = o,I’
O-P
o
Ay = o
GV

The closed form solution of the covariance has been
computed. The covariance is shown to be equal to
the gain times the measurement error matrix, as
expected from Kalman filter theory.

Theo — B —n —6 filter correctly computes the same
results as the a— B filter [1] in the limit of only

position updates or the velocity measurement error
going to infinity.

An example was computed that demonstrates that
tracking errors are reduced if both position and
velocity measurements are used inan o — 3 —n—0
filter, rather than position only estimates in an
o — P filter. This impacts the physical processes.
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