Physics, Chemistry, and Mathematics of Photography

James K Beard
Part I of II, February 26, 2003
jkbeard@jameskbeard.com
jkbeard@ieee.org

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.
Topics

• Part I: Resolution
 – On the film
 – On the print
 – On the slides
 – In television

• Part II: Color, shading, and prints
 – Contrast, color, and the Zone System
 – Lens design
 – Digital and conventional photography
 – The portal: scanning and scanners
Optical Fourier Transform

Light Mask Lens

Focused Light Fourier Plane

\[\lambda \]
Optical Fourier Transform

- Collimated monochromatic impinging light
- Mask modulates light intensity
- Lens makes all effective path lengths to focal point equal
- Light at focal point is

\[a(\rho, \varphi) = \frac{D_0}{2} \int_{0}^{\pi} \int_{-\pi}^{\pi} m(r, \theta) \cdot \exp \left(-j \cdot \frac{2\pi}{\lambda} \cdot r \cdot \rho \cdot \cos(\theta - \varphi) \right) \cdot r \cdot dr \cdot d\theta \]

\(r, \theta \leftrightarrow \text{Lens Plane}; \ r \text{ is distance} \)

\(\rho, \varphi \leftrightarrow \text{Fourier Plane}; \ \rho \text{ is half-cone angle} \)

“Electro-Optical Systems Analysis,”
K. Seyrafi, p 174-177
The Airy Disk

- An open, uniformly weighted circular aperture of diameter D_0
- Intensity on the Fourier plane is

$$a(\rho) = \frac{\pi \cdot D_0^2}{4} \cdot \frac{2 \cdot J_1 \left(\frac{\pi \cdot D_0 \cdot \rho}{\lambda} \right)}{\pi \cdot D_0 \cdot \rho \cdot \frac{\lambda}{\rho}}$$

- Resolution is peak-to-null distance

$$\Delta \rho = \frac{1.22 \cdot \lambda}{D_0}$$

The Diffraction Limit on the Focal Plane

• The f/stop or f-number is
\[(f / no) = \frac{f}{D_0}\]

• The numerical aperture for a lens is
\[NA = n' \cdot \sin (u') = \frac{1}{2 \cdot (f / no)}\]

• Resolution distance is
\[\Delta \rho \cdot f = 1.22 \cdot (f / no) \cdot \lambda = \frac{0.61 \cdot \lambda}{NA}\]
• A resolvable line is two resolution elements
 – Two lines must have a resolvable space between them
 – The distance between the line and the resolvable space is a resolvable element
• The number of lines per millimeter is

\[lpmm = \frac{1}{2 \cdot \Delta \rho \cdot f} = \frac{1}{2.44 \cdot (f / no) \cdot \lambda} = \frac{NA}{1.22 \cdot \lambda} \]
Resolution on 35 mm Film

• Film resolution is 80 to 200 lines per mm

• Optics limit
 – Diffraction limit is about 133 lines per mm at f/5.6
 – Achieved in laboratory: 80 to 100 lines per mm
 – Achieved by the photographer: 40-80 lines per mm

Practical limit is 40 – 80 lines per mm
Resolution on 70 mm Film

• Film resolution is 80 to 200 lines per mm

• Optics limit
 – Diffraction limit is about 65 lines per mm at f/11
 – Achieved in laboratory: 45 to 80 lines per mm
 – Achieved by the photographer: 25-50 lines per mm

Practical limit is 25 – 50 lines per mm
Number of Pixels

• In 35 mm film
 – Image is 24 mm by 36 mm
 – 4 X 3 aspect limit is 24 mm X 32 mm
 – 4.7 M at 40 lines per mm (M = 1024^2 pixels)
 – 18.75 M at 80 lines per mm

• In 70 mm film
 – Image is 6 X 7 cm
 – 22.4 M in 5.25 X 7 cm at 40 lines per mm
Print Resolution

• Eye is about a 24 mm focal length
• F-stop of pupil is f/2.8 to f/32
 – Typical pupil is f/11 in bright light
 – Eye resolution is 0.3 milliradians for green light
• Print resolution
 – At two feet viewing distance
 – About 144 dots per inch
Print Resolution vs. Distance

[Graph showing the relationship between print resolution (dots per inch) and viewing distance (feet).]
Scanning Slides and Negatives

• Resolution
 – Scale factor from lines per mm to DPI
 \[\frac{25.4}{\text{in}} \cdot 2 \frac{\text{dots}}{\text{line}} = 50.8 \frac{\text{dots}}{\text{in}} \]
 – 80 line per mm is 4000 DPI

• Vendors of slide/negative scanners
 – SmartDisk: 2700 or 3600 DPI
 – Nikon Coolscan, Canoscan, Microtek, Polaroid: 4000 DPI
 – Minolta Dimage: 2820, 4800 DPI
NTSC Color TV

• RGB is encoded for transmission
 – Illuminance, weighted combination
 – I and Q channels to carry color
 – Signal is compatible with pre-color TV

• Resolution
 – Limited by channel bandwidth to 220 lines
 – Color is less; relationship is complex
The Encoding Matrix

<table>
<thead>
<tr>
<th></th>
<th>E_R'</th>
<th>E_G'</th>
<th>E_B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_Y'</td>
<td>0.30</td>
<td>0.59</td>
<td>0.11</td>
</tr>
<tr>
<td>E_I'</td>
<td>0.60</td>
<td>-0.28</td>
<td>-0.32</td>
</tr>
<tr>
<td>E_Q'</td>
<td>0.21</td>
<td>-0.52</td>
<td>0.31</td>
</tr>
</tbody>
</table>
NTSC Color Encoding

\[\begin{bmatrix} E_R' - E_Y' \end{bmatrix} \]

1.14

\[E_C' \]

I Channel BW: 2 MHz
Q Channel BW: 0.5 MHz

\[\begin{bmatrix} E_B' - E_Y' \end{bmatrix} \]

2.03

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.
NTSC Summary

• Resolution
 - Limited by TV channel bandwidth
 - About 200 by 480
 - Color is less bandwidth – complex relationship
 - Eye sees 200 by 480
 - Frame averaging with motion enhances perception

• Color
 - Purity and quality are not a problem
 - Blue is lower resolution than red, green
HDTV

• Information given here is from
 - http://www.ee.washington.edu/conselec/CE/kuhn/hdtv/95x5.htm

• Aspect ratio remains 16:9

• Resolution – either of
 - 1280 X 720 (1 MPX)
 - 1920 X 1080 (2 MPX)
Field of View

<table>
<thead>
<tr>
<th>Format</th>
<th>Field of View, Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>6.5</td>
</tr>
<tr>
<td>HDTV 1</td>
<td>20</td>
</tr>
<tr>
<td>HDTV 2</td>
<td>30</td>
</tr>
<tr>
<td>35 mm</td>
<td>104</td>
</tr>
</tbody>
</table>
Viewing Image Size vs. Distance

![Graph showing the relationship between viewing distance and image size for TV, Poster, HDTV 1, HDTV 2, and 35 mm.](image-url)
Viewing Image Size vs. Distance

- Movie
- Drive-In

<table>
<thead>
<tr>
<th>Viewing distance, feet</th>
<th>Width, inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>400</td>
<td>2000</td>
</tr>
<tr>
<td>600</td>
<td>3000</td>
</tr>
<tr>
<td>800</td>
<td>4000</td>
</tr>
<tr>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>1200</td>
<td>6000</td>
</tr>
</tbody>
</table>

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.
Comparing Digital and 35 mm Focal Plane Resolution

Focal plane, MPX

Equivalent 35 mm lines per mm

- Graphics arts lab
- Best studio work
- Best hand-held
- 3 MPX digital
- 1 MPX HDTV

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.

MTE 2 February 26, 2003 Slide 25
References

• HDTV
 – http://www.ee.washington.edu/conselec/CE/kuhn/hdtv/95x5.htm

• Foveon digital photography focal planes
 – http://www.foveon.com/
 – http://www.sigma-photo.com/

• Popular Photography Magazine
 – http://www.popphoto.com/