Topics

• Part I: Resolution
 – On the film
 – On the print
 – On the slides
 – In television

• Part II: Color, shading, and prints
 – Contrast, color, and the Zone System
 – Lens design
 – Digital and conventional photography
 – The portal: scanning and scanners
Negative Films

• Black and white
 – Film contrast is about 0.7
 – Standard print paper contrast is about 1.4
 – Special paper contrasts vary from about 0.5 to 2.5 for solving special problems

• Color negatives have a standard
 – Film contrast is 0.5
 – Paper contrast is 2.0
Color Negative Film

- Print quality is the requirement
- Problems are
 - Spectral sensitivity of the layers to pure blue, green, and red
 - Spectral purity of the dyes for yellow, magenta, and cyan
- Design is
 - Allow a color cast (the familiar orange)
 - Accept a low contrast in the negative
Spectral Sensitivity Curves

From Kodak
Publication E-2328
Bright Sun Film GA
(Gold 100 color negative film)

Effective Exposure: 1/25 second
Process: C-41
Densitometry: Status M
Density: 0.2 above D-min

LOG SENSITIVITY

WAVELENGTH (nm)

*Sensitivity = reciprocal of exposure (erg/cm²) required to produce specified density

Copyright 2003 by James K. Beard, an unpublished work. All rights reserved.
Spectral Dye Density Curves

From Kodak
Publication E-2328
Bright Sun Film GA
(Gold 100 color
negative film)
Characteristic Curves

Exposure: Daylight
Process: C-41
Densitometry: Status M

From Kodak
Publication E-2328
Bright Sun Film GA
(Gold 100 color
negative film)
Print Paper and Color Slides

• Special requirements
 – Highlights must be clear to be white or project brightly
 – Overall color cast must be neutral
 – Contrast must be near 1.0

• Color slide film Contrast is about 1.1

• Prints
 – Reversal paper contrast is about 1.0
 – Color print paper contrast is about 2.0
The Trade Space

• Dynamic range limits
 – Dye density range is the image dynamic range
 – Density range of 1.8 is minimum for high quality prints and slides

• Resolution versus speed
 – High speed needs thicker emulsion
 – Thicker emulsion means lower resolution

• Grain is the noise floor for resolution
Quality and the Trade Space: Color Negatives

• Quality is the only objective
• Trade space issues
 – Color purity
 » In the color-sensitive layers
 » In the dyes formed in the development process
 – Grain, sensitivity, and resolution
• Results
 – High quality color
 – Good speed, fine grain, high resolution with technology advances
Quality and the Trade Space: Prints From Color Negatives

• Objectives
 – Quality
 – Bright whites and dark blacks
• Trade space issues
 – Color purity in sensitivity and dyes
 – Consistent color balance from black to white
• Results
 – High quality color
 – Speed-grain trade available to consumer
Quality and the Trade Space: Color Slides

• Objectives
 – Quality
 – Transparent whites
 – Dark blacks

• Problems are
 – Color purity in sensitivity and dyes
 – Grain, sensitivity, and resolution

• Results
 – Good to excellent quality color
 – Highest speeds, good grain, good resolution
Quality and the Trade Space: Prints From Color Slides

• Objectives
 - Quality
 - White whites
 - Dark blacks

• Problems are
 - Color purity in sensitivity and dyes
 - Grain, sensitivity, and resolution

• Results
 - Good quality color
 - Different character than prints from negatives
Color and Digital Photography

• Color Purity
 - Light recording – Limited only by filtration quality, a trade with “film speed”
 - Digital output – unlimited, cross-color coupling in sensitivity is reduced with software

• Linearity
 - Essentially perfect, limited by electrical leakages
 - Bounded
 » Below by shot noise
 » Above by saturation
Problems in Digital Photography

- **Resolution**
 - Focal plane pixel count – limited by CCD gate density
 - Each pixel is only one color – resolution is 1/3 that indicated by focal plane pixel count
 - Exception – emerging Foveon technology

- **Color**
 - Dyes in photo printers are the limitation
 - Dye design simpler than film and paper dyes

- **Exposure latitude**
When Smaller Is Better

• Smaller focal plane
 – Trade space for lens is friendlier
 – Faster lenses for given performance
 – Wider zoom range for given performance
 – Higher resolution for given speed

• Digital photography
 – Smaller focal planes, better lenses at present
 – Focal planes are getting bigger
 – An experimental 21 MPX focal plane is bigger than a 35 mm image
Lens Design

• Goal: Make optical distance to a flat focal plane equal across the aperture
• A curve fitting problem in these variables
 – Wavelengths 0.4 to 0.7 microns
 – Angle of incidence == position on the focal plane
 – Object distance (conjugate)
 – Zoom
• Solution must be near optimal at all useful f/stops
The Lens Trade Space

- Diffraction limited resolution is the goal
- Goals are $\frac{1}{4}$ wavelength variation in effective optical length of collimated light to a point on the focal plane
- Variables in the curve fitting problem
- Reflections and flare
- Optical absorption in the glass
Examples of Lenses

• Single wavelength, single point, single conjugate diffraction limiting
 - Single element
 - Any glass
 - Aspherical lens surfaces for fast lens

• Two wavelength – achromats
 - Two elements
 - Glasses with different dispersion (crown, flint)

• Three wavelengths – apochromats
Lens Aberrations

• **Blooming**
 - Difference in focal plane distance with distance from center of lens
 - Occurs anywhere on image plane

• **Astigmatism**
 - Difference in focal length and focal plane distance with position on lens plane
 - Occurs off-axis

• **Coma**
 - Difference in focal length with position on image plane
Lens Distortions

- Pincushion – focal length shorter off-axis
- Barrel – focal length longer off-axis
 - Fish-eye effect is intentional barrel distortion
- Focal plane curvature
 - The main fit parameter in the lens design problem
 - Sometimes intentionally done to match film curvature
- Fish-eye lenses
 - Originally conceived for comet searches
 - Stereographic projection equalizes exposure over the focal plane – no cosine falloff
Lens Technologies

• Lower dispersion glasses
 – Achromat trade space friendlier
 – Achromat performance similar to apochromats

• Aspherical lens surfaces
 – Faster high-quality lenses

• Multiple layer coatings
 – Lower reflections over spectrum – less flare, lower light loss
 – Less coloration in transmitted light
Focal Plane Size

• Larger focal plane
 – Longer focal lengths for equivalent coverage
 – Larger lens surfaces with $\frac{1}{4}$ wavelength tolerances
 – Volume of glass proportional to cube of focal plane width

• Result of reducing focal plane size
 – More variety in lenses
 – Faster lenses
 – Wider zoom ranges
The Zone System

• A Zone is
 - A one-stop (factor of two) variation in exposure
 - A measure of brightness in the scene
 - A measure of brightness in the print

• Zones
 - Zone I is total blackness
 - Zone VIII is total whiteness
 - Print zones are II to VII
 - Mid-range is Zone V
8-Bit Digital Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>128 – 255</td>
<td>White, with detail</td>
</tr>
<tr>
<td>VI</td>
<td>64 – 127</td>
<td>Sky, bright colors</td>
</tr>
<tr>
<td>V</td>
<td>32 – 63</td>
<td>Mid-tones</td>
</tr>
<tr>
<td>IV</td>
<td>16 – 31</td>
<td>Darker colors</td>
</tr>
<tr>
<td>III</td>
<td>8 – 15</td>
<td>Shadows, with color</td>
</tr>
<tr>
<td>II</td>
<td>0 – 7</td>
<td>Black, with detail</td>
</tr>
</tbody>
</table>
Scanning and Originals

• Prints from negatives or slides
 – Highlights and shadows flattened by the characteristic curve of the paper dyes
 – Loss of color fidelity through imperfect sensitivity and density curves
 – Changes in color balance with zone

• Color slides
 – No flattening of contrast in shadows
 – Otherwise, same problems as prints

• Color negatives – color balance changes with zone
Conclusions

• Conventional photography
 – Here to stay for awhile in niche applications
 – The vacuum tube technology analogy

• Digital photography
 – Still an emerging technology
 – Just now really competitive with conventional techniques
 – Superior potential for color fidelity, resolution, cost
 – Extremely large prints impractical just now

• Scan the negative or slide if available
References

• Exotic Slide Film Pushing Techniques
 http://jameskbeard.com

• HDTV
 – http://www.ee.washington.edu/conselec/CE/kuhn/hdtv/95x5.htm
References (Continued)

• Foveon digital photography focal planes
 - http://www.foveon.com/
 - http://www.sigma-photo.com/

• Popular Photography Magazine
 - http://www.popphoto.com/